Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53 protein aggregation promotes platinum resistance in ovarian cancer

Abstract

High-grade serous ovarian carcinoma (HGSOC), the most lethal gynecological cancer, often leads to chemoresistant diseases. The p53 protein is a key transcriptional factor regulating cellular homeostasis. A majority of HGSOCs have inactive p53 because of genetic mutations. However, genetic mutation is not the only cause of p53 inactivation. The aggregation of p53 protein has been discovered in different types of cancers and may be responsible for impairing the normal transcriptional activation and pro-apoptotic functions of p53. We demonstrated that in a unique population of HGSOC cancer cells with cancer stem cell properties, p53 protein aggregation is associated with p53 inactivation and platinum resistance. When these cancer stem cells differentiated into their chemosensitive progeny, they lost tumor-initiating capacity and p53 aggregates. In addition to the association of p53 aggregation and chemoresistance in HGSOC cells, we further demonstrated that the overexpression of a p53-positive regulator, p14ARF, inhibited MDM2-mediated p53 degradation and led to the imbalance of p53 turnover that promoted the formation of p53 aggregates. With in vitro and in vivo models, we demonstrated that the inhibition of p14ARF could suppress p53 aggregation and sensitize cancer cells to platinum treatment. Moreover, by two-dimensional gel electrophoresis and mass spectrometry we discovered that the aggregated p53 may function uniquely by interacting with proteins that are critical for cancer cell survival and tumor progression. Our findings help us understand the poor chemoresponse of a subset of HGSOC patients and suggest p53 aggregation as a new marker for chemoresistance. Our findings also suggest that inhibiting p53 aggregation can reactivate p53 pro-apoptotic function. Therefore, p53 aggregation is a potential therapeutic target for reversing chemoresistance. This is paramount for improving ovarian cancer patients’ responses to chemotherapy, and thus increasing their survival rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Clarke-Pearson DL Clinical practice. Screening for ovarian cancer. N Engl J Med 2009; 361: 170–177.

    Article  CAS  Google Scholar 

  2. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  3. UMD TP53 mutation database. http://p53.fr/.

  4. IARC TP53 Database. http://www.iarc.fr/p53/Index.html.

  5. Freed-Pastor WA, Prives C Mutant p53: one name, many proteins. Genes Dev 2012; 26: 1268–1286.

    Article  CAS  Google Scholar 

  6. Moll UM, Riou G, Levine AJ Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA 1992; 89: 7262–7266.

    Article  CAS  Google Scholar 

  7. Tominaga O, Hamelin R, Trouvat V, Salmon RJ, Lesec G, Thomas G et al. Frequently elevated content of immunochemically defined wild-type p53 protein in colorectal adenomas. Oncogene 1993; 8: 2653–2658.

    CAS  PubMed  Google Scholar 

  8. Houben R, Hesbacher S, Schmid CP, Kauczok CS, Flohr U, Haferkamp S et al. High-level expression of wild-type p53 in melanoma cells is frequently associated with inactivity in p53 reporter gene assays. PLoS ONE 2011; 6: e22096.

    Article  CAS  Google Scholar 

  9. Wong KK, Izaguirre DI, Kwan SY, King ER, Deavers MT, Sood AK et al. Poor survival with wild-type TP53 ovarian cancer? Gynecol Oncol 2013; 130: 565–569.

    Article  CAS  Google Scholar 

  10. Silva JL, Rangel LP, Costa DC, Cordeiro Y, De Moura Gallo CV . Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep 2013; 33: 593–603.

    Article  CAS  Google Scholar 

  11. Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011; 7: 285–295.

    Article  CAS  Google Scholar 

  12. Ano Bom AP, Rangel LP, Costa DC, de Oliveira GA, Sanches D, Braga CA et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem 2012; 287: 28152–28162.

    Article  CAS  Google Scholar 

  13. Levy CB, Stumbo AC, Ano Bom AP, Portari EA, Cordeiro Y, Silva JL et al. Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors. Int J Biochem Cell Biol 2011; 43: 60–64.

    Article  CAS  Google Scholar 

  14. Stefani M, Dobson CM Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 2003; 81: 678–699.

    Article  CAS  Google Scholar 

  15. Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR et al. Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry 2006; 45: 1608–1619.

    Article  CAS  Google Scholar 

  16. Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM, Lopez PM et al. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 2003; 42: 9022–9027.

    Article  CAS  Google Scholar 

  17. Rigacci S, Bucciantini M, Relini A, Pesce A, Gliozzi A, Berti A et al. The (1-63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies. Biophys J 2008; 94: 3635–3646.

    Article  CAS  Google Scholar 

  18. Butler JS, Loh SN Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry 2003; 42: 2396–2403.

    Article  CAS  Google Scholar 

  19. Ishimaru D, Lima LM, Maia LF, Lopez PM, Ano Bom AP, Valente AP et al. Reversible aggregation plays a crucial role on the folding landscape of p53 core domain. Biophys J 2004; 87: 2691–2700.

    Article  CAS  Google Scholar 

  20. Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 2011; 144: 67–78.

    Article  CAS  Google Scholar 

  21. Forget KJ, Tremblay G, Roucou X p53 aggregates penetrate cells and induce the co-aggregation of intracellular p53. PLoS ONE 2013; 8: e69242.

    Article  CAS  Google Scholar 

  22. Lasagna-Reeves CA, Clos AL, Castillo-Carranza D, Sengupta U, Guerrero-Munoz M, Kelly B et al. Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity. Biochem Biophys Res Commun 2013; 430: 963–968.

    Article  CAS  Google Scholar 

  23. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  Google Scholar 

  24. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004; 117 (Pt 16): 3539–3545.

    Article  CAS  Google Scholar 

  25. Shih Ie M, Davidson B Pathogenesis of ovarian cancer: clues from selected overexpressed genes. Future Oncol 2009; 5: 1641–1657.

    Article  Google Scholar 

  26. Peng S, Maihle NJ, Huang Y Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 2010; 29: 2153–2159.

    Article  CAS  Google Scholar 

  27. Rizzo S, Hersey JM, Mellor P, Dai W, Santos-Silva A, Liber D et al. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol Cancer Ther 2011; 10: 325–335.

    Article  CAS  Google Scholar 

  28. Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD et al. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res 2012; 18: 869–881.

    Article  CAS  Google Scholar 

  29. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 2009; 8: 158–166.

    Article  CAS  Google Scholar 

  30. Alvero AB, Fu HH, Holmberg J, Visintin I, Mor L, Marquina CC et al. Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 2009; 27: 2405–2413.

    Article  CAS  Google Scholar 

  31. Chen R, Alvero AB, Silasi DA, Kelly MG, Fest S, Visintin I et al. Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 2008; 27: 4712–4723.

    Article  CAS  Google Scholar 

  32. Craveiro V, Yang-Hartwich Y, Holmberg JC, Sumi NJ, Pizzonia J, Griffin B et al. Phenotypic modifications in ovarian cancer stem cells following Paclitaxel treatment. Cancer Med 2013; 2: 751–762.

    Article  CAS  Google Scholar 

  33. Aguzzi A, O'Connor T Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 2010; 9: 237–248.

    Article  CAS  Google Scholar 

  34. Zhang Y, Xiong Y, Yarbrough WG ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725–734.

    Article  CAS  Google Scholar 

  35. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998; 92: 713–723.

    Article  CAS  Google Scholar 

  36. Tao W, Levine AJ P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 1999; 96: 6937–6941.

    Article  CAS  Google Scholar 

  37. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1999; 1: 20–26.

    Article  CAS  Google Scholar 

  38. Iwakuma T, Lozano G MDM2 an introduction. Mol Cancer Res 2003; 1: 993–1000.

    CAS  Google Scholar 

  39. Rayburn E, Zhang R, He J, Wang H MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 2005; 5: 27–41.

    Article  CAS  Google Scholar 

  40. Biancalana M, Koide S Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010; 1804: 1405–1412.

    Article  CAS  Google Scholar 

  41. Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2007; 2: 18.

    Article  Google Scholar 

  42. Zheng S, Chen P, McMillan A, Lafuente A, Lafuente MJ, Ballesta A et al. Correlations of partial and extensive methylation at the p14(ARF) locus with reduced mRNA expression in colorectal cancer cell lines and clinicopathological features in primary tumors. Carcinogenesis 2000; 21: 2057–2064.

    Article  CAS  Google Scholar 

  43. Ciechanover A The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology 2006; 66 (2 Suppl 1): S7–19.

    Article  Google Scholar 

  44. Wong E, Cuervo AM Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 2010; 13: 805–811.

    Article  CAS  Google Scholar 

  45. Kraiss S, Spiess S, Reihsaus E, Montenarh M Correlation of metabolic stability and altered quaternary structure of oncoprotein p53 with cell transformation. Exp Cell Res 1991; 192: 157–164.

    Article  CAS  Google Scholar 

  46. Wilcken R, Wang G, Boeckler FM, Fersht AR Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. Proc Natl Acad Sci USA 2012; 109: 13584–13589.

    Article  CAS  Google Scholar 

  47. Silva JL, Gallo CV, Costa DC, Rangel LP Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci 2014; 39: 260–267.

    Article  CAS  Google Scholar 

  48. Albor A, Kaku S, Kulesz-Martin M Wild-type and mutant forms of p53 activate human topoisomerase I: a possible mechanism for gain of function in mutants. Cancer Res 1998; 58: 2091–2094.

    CAS  PubMed  Google Scholar 

  49. Peng Y, Chen L, Li C, Lu W, Chen J Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J Biol Chem 2001; 276: 40583–40590.

    Article  CAS  Google Scholar 

  50. Tiscornia G, Singer O, Verma IM Production and purification of lentiviral vectors. Nat Protoc 2006; 1: 241–245.

    Article  CAS  Google Scholar 

  51. Kamsteeg M, Rutherford T, Sapi E, Hanczaruk B, Shahabi S, Flick M et al. Phenoxodiol—an isoflavone analog—induces apoptosis in chemoresistant ovarian cancer cells. Oncogene 2003; 22: 2611–2620.

    Article  CAS  Google Scholar 

  52. Kayed R, Glabe CG Conformation-dependent anti-amyloid oligomer antibodies. Methods Enzymol 2006; 413: 326–344.

    Article  CAS  Google Scholar 

  53. Szybka M, Zakrzewska M, Rieske P, Pasz-Walczak G, Kulczycka-Wojdala D, Zawlik I et al. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer. BMC Cancer 2009; 9: 278.

    Article  Google Scholar 

  54. Wells J, Farnham PJ Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 2002; 26: 48–56.

    Article  CAS  Google Scholar 

  55. Klump B, Hsieh CJ, Dette S, Holzmann K, Kiebetalich R, Jung M et al. Promoter methylation of INK4a/ARF as detected in bile-significance for the differential diagnosis in biliary disease. Clin Cancer Res 2003; 9: 1773–1778.

    CAS  PubMed  Google Scholar 

  56. Erica Golemis PDA (ed) Protein-Protein Interactions: A Molecular Cloning Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2002.

  57. Wu TL Two-dimensional difference gel electrophoresis. Methods Mol Biol 2006; 328: 71–95.

    CAS  PubMed  Google Scholar 

  58. Dieguez-Acuna F, Kodama S, Okubo Y, Paz AC, Gygi SP, Faustman DL Proteomics identifies multipotent and low oncogenic risk stem cells of the spleen. Int J Biochem Cell Biol 2010; 42: 1651–1660.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH Grants RO1CA118678 and RO1CA127913, Sands Family Foundation and Discovery to Cure Program. We thank Drs Alice Soragni and David Eisenberg of UCLA for their suggestion that aggregated p53 could act as a potential therapeutic target.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Mor.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang-Hartwich, Y., Soteras, M., Lin, Z. et al. p53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 34, 3605–3616 (2015). https://doi.org/10.1038/onc.2014.296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.296

This article is cited by

Search

Quick links