Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural selection of tumor variants in the generation of “tumor escape” phenotypes

Abstract

The idea that tumors must “escape” from immune recognition contains the implicit assumption that tumors can be destroyed by immune responses either spontaneously or as the result of immunotherapeutic intervention. Simply put, there is no need for tumor escape without immunological pressure. Here, we review evidence supporting the immune escape hypothesis and critically explore the mechanisms that may allow such escape to occur. We discuss the idea that the central engine for generating immunoresistant tumor cell variants is the genomic instability and dysregulation that is characteristic of the transformed genome. “Natural selection” of heterogeneous tumor cells results in the survival and proliferation of variants that happen to possess genetic and epigenetic traits that facilitate their growth and immune evasion. Tumor escape variants are likely to emerge after treatment with increasingly effective immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation versus suppression during tumor progression.
Figure 2: Natural selection of tumor variants in the generation of “tumor escape” phenotypes.
Figure 3: Molecular mechanisms responsible for HLA class I deficiency.
Figure 4: Alternative models for the induction of FasL-mediated T cell death after encounter with tumor cells.

Similar content being viewed by others

References

  1. Kaplan, D.H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA 95, 7556–7561 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    CAS  PubMed  Google Scholar 

  4. Street, S.E., Trapani, J.A., MacGregor, D. & Smyth, M.J. Suppression of lymphoma and epithelial malignancies effected by interferon γ. J. Exp. Med. 196, 129–134 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  6. Smyth, M.J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195, 161–169 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Restifo, N.P. et al. Assumptions of the tumor 'escape' hypothesis. Semin. Cancer Biol. 12, 81–86 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stoler, D.L. et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl. Acad. Sci. USA 96, 15121–15126 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnsen, A.K. et al. Systemic deficits in transporter for antigen presentation (TAP)-1 or proteasome subunit LMP2 have little or no effect on tumor incidence. Int. J. Cancer 91, 366–372 (2001).

    CAS  PubMed  Google Scholar 

  11. Zheng, P., Sarma, S., Guo, Y. & Liu, Y. Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: lessons from recurrent tumors. Cancer Res. 59, 3461–3467 (1999).

    CAS  PubMed  Google Scholar 

  12. Restifo, N.P. et al. Loss of functional β2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst. 88, 100–108 (1996).

    CAS  PubMed  Google Scholar 

  13. Garrido, F. et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol. Today 18, 89–95 (1997).

    CAS  PubMed  Google Scholar 

  14. Algarra, I., Collado, A. & Garrido, F. Altered MHC class I antigens in tumors. Int. J. Clin. Lab. Res. 27, 95–102 (1997).

    CAS  PubMed  Google Scholar 

  15. Cabrera, T. et al. High frequency of altered HLA class I phenotypes in invasive breast carcinomas. Hum. Immunol. 50, 127–134 (1996).

    CAS  PubMed  Google Scholar 

  16. Hicklin, D.J. et al. β2-microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J. Clin. Invest. 101, 2720–2729 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Restifo, N.P. et al. Identification of human cancers deficient in antigen processing. J. Exp. Med. 177, 265–272 (1993).

    CAS  PubMed  Google Scholar 

  18. Korkolopoulou, P., Kaklamanis, L., Pezzella, F., Harris, A.L. & Gatter, K.C. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br. J. Cancer 73, 148–153 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanda, M.G. et al. Molecular characterization of defective antigen processing in human prostate cancer. J. Natl. Cancer Inst. 87, 280–285 (1995).

    CAS  PubMed  Google Scholar 

  20. Seliger, B. et al. Expression and function of the peptide transporters in escape variants of human renal cell carcinomas. Exp. Hematol. 25, 608–614 (1997).

    CAS  PubMed  Google Scholar 

  21. Ramal, L.M. et al. Molecular strategies to define HLA haplotype loss in microdissected tumor cells. Hum. Immunol. 61, 1001–1012 (2000).

    CAS  PubMed  Google Scholar 

  22. Versteeg, R. et al. Suppression of class I human histocompatibility leukocyte antigen by c-myc is locus specific. J. Exp. Med. 170, 621–635 (1989).

    CAS  PubMed  Google Scholar 

  23. Soong, T.W. & Hui, K.M. Locus-specific transcriptional control of HLA genes. J. Immunol. 149, 2008–2020 (1992).

    CAS  PubMed  Google Scholar 

  24. Marincola, F.M. et al. Locus-specific analysis of human leukocyte antigen class I expression in melanoma cell lines. J. Immunother. Emphasis. Tumor Immunol. 16, 13–23 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Koopman, L.A., van Der, S., Giphart, M.J. & Fleuren, G.J. Human leukocyte antigen class I gene mutations in cervical cancer. J. Natl. Cancer Inst. 91, 1669–1677 (1999).

    CAS  PubMed  Google Scholar 

  26. Porgador, A., Mandelboim, O., Restifo, N.P. & Strominger, J.L. Natural killer cell lines kill autologous β2-microglobulin-deficient melanoma cells: implications for cancer immunotherapy. Proc. Natl. Acad. Sci. USA 94, 13140–13145 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    CAS  PubMed  Google Scholar 

  28. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA 96, 6879–6884 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Garrido, F. & Algarra, I. MHC antigens and tumor escape from immune surveillance. Adv. Cancer Res. 83, 117–158 (2001).

    CAS  PubMed  Google Scholar 

  30. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Galea-Lauri, J. et al. Expression of a variant of CD28 on a subpopulation of human NK cells: implications for B7-mediated stimulation of NK cells. J. Immunol. 163, 62–70 (1999).

    CAS  PubMed  Google Scholar 

  32. Carbone, E. et al. A new mechanism of NK cell cytotoxicity activation: the CD40-CD40 ligand interaction. J. Exp. Med. 185, 2053–2060 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Takeda, K. et al. CD27-mediated activation of murine NK cells. J. Immunol. 164, 1741–1745 (2000)

    CAS  PubMed  Google Scholar 

  34. Apte, R.S., Mayhew, E. & Niederkorn, J.Y. Local inhibition of natural killer cell activity promotes the progressive growth of intraocular tumors. Invest. Ophthalmol. Vis. Sci. 38, 1277–1282 (1997).

    CAS  PubMed  Google Scholar 

  35. de Vries, T.J. et al. Heterogeneous expression of immunotherapy candidate proteins gp100, MART-1, and tyrosinase in human melanoma cell lines and in human melanocytic lesions. Cancer Res. 57, 3223–3229 (1997).

    CAS  PubMed  Google Scholar 

  36. Hofbauer, G.F., Kamarashev, J., Geertsen, R., Boni, R. & Dummer, R. Melan A/MART-1 immunoreactivity in formalin-fixed paraffin-embedded primary and metastatic melanoma: frequency and distribution. Melanoma Res. 8, 337–343 (1998).

    CAS  PubMed  Google Scholar 

  37. Jager, E. et al. Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int. J. Cancer 66, 470–476 (1996).

    CAS  PubMed  Google Scholar 

  38. Lee, K.H. et al. Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination. J. Immunol. 161, 4183–4194 (1998).

    CAS  PubMed  Google Scholar 

  39. Riker, A. et al. Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126, 112–120 (1999).

    CAS  PubMed  Google Scholar 

  40. Cormier, J.N. et al. Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in an in vitro melanoma model. Int. J. Cancer 80, 781–790 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schreiber, H., Wu, T.H., Nachman, J. & Kast, W.M. Immunodominance and tumor escape. Semin. Cancer Biol. 12, 25–31 (2002).

    CAS  PubMed  Google Scholar 

  42. Straus, S.E. et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98, 194–200 (2001).

    CAS  PubMed  Google Scholar 

  43. Davidson, W.F., Giese, T. & Fredrickson, T.N. Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J. Exp. Med. 187, 1825–1838 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeda, K. et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Med. 7, 94–100 (2001)

    CAS  PubMed  Google Scholar 

  45. Salvesen, G.S. & Dixit, V.M. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96, 10964–10967 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

    CAS  PubMed  Google Scholar 

  47. Medema, J.P., de Jong, J., van Hall, T., Melief, C.J. & Offringa, R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J. Exp. Med. 190, 1033–1038 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Landowski, T.H., Qu, N., Buyuksal, I., Painter, J.S. & Dalton, W.S. Mutations in the Fas antigen in patients with multiple myeloma. Blood 90, 4266–4270 (1997).

    CAS  PubMed  Google Scholar 

  49. Gronbaek, K. et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 92, 3018–3024 (1998).

    CAS  PubMed  Google Scholar 

  50. Shin, M.S. et al. Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am. J. Pathol. 154, 1785–1791 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shin, M.S. et al. Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 21, 4129–4136 (2002).

    CAS  PubMed  Google Scholar 

  52. Shin, M.S. et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99, 4094–4099 (2002).

    CAS  PubMed  Google Scholar 

  53. Medema, J.P. et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl. Acad. Sci. USA 98, 11515–11520 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hersey, P. & Zhang, X.D. How melanoma cells evade trail-induced apoptosis. Nature Rev. Cancer 1, 142–150 (2001).

    CAS  Google Scholar 

  55. Schwartz, R.H. A cell culture model for T lymphocyte clonal anergy. Science 248, 1349–1356 (1990).

    CAS  PubMed  Google Scholar 

  56. Chen, L. et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J. Exp. Med. 179, 523–532 (1994).

    CAS  PubMed  Google Scholar 

  57. Toi, M. et al. Clinical significance of the determination of angiogenic factors. Eur. J. Cancer 32, 2513–2519 (1996).

    Google Scholar 

  58. Oyama, T. et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-κB activation in hemopoietic progenitor cells. J. Immunol. 160, 1224–1232 (1998).

    CAS  PubMed  Google Scholar 

  59. Saito, H., Tsujitani, S., Ikeguchi, M., Maeta, M. & Kaibara, N. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. Br. J. Cancer 78, 1573–1577 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Almand, B. et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res. 6, 1755–1766 (2000).

    CAS  PubMed  Google Scholar 

  61. Girolomoni, G. & Ricciardi-Castagnoli, P. Dendritic cells hold promise for immunotherapy. Immunol. Today 18, 102–104 (1997).

    CAS  PubMed  Google Scholar 

  62. De Smedt, T. et al. Effect of interleukin-10 on dendritic cell maturation and function. Eur. J. Immunol. 27, 1229–1235 (1997).

    CAS  PubMed  Google Scholar 

  63. Sharma, S. et al. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J. Immunol. 163, 5020–5028 (1999).

    CAS  PubMed  Google Scholar 

  64. Ludewig, B. et al. Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-α, but strongly enhanced by interleukin-10. Eur. J. Immunol. 25, 1943–1950 (1995).

    CAS  PubMed  Google Scholar 

  65. Carbone, E. et al. Recognition of autologous dendritic cells by human NK cells. Eur. J. Immunol. 29, 4022–4029 (1999).

    CAS  PubMed  Google Scholar 

  66. Yue, F.Y. et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int. J. Cancer 71, 630–637 (1997).

    CAS  PubMed  Google Scholar 

  67. Salazar-Onfray, F. et al. Down-regulation of the expression and function of the transporter associated with antigen processing in murine tumor cell lines expressing IL-10. J. Immunol. 159, 3195–3202 (1997).

    CAS  PubMed  Google Scholar 

  68. Zeidler, R. et al. Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10. Blood 90, 2390–2397 (1997).

    CAS  PubMed  Google Scholar 

  69. Ristimaki, A., Honkanen, N., Jankala, H., Sipponen, P. & Harkonen, M. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res. 57, 1276–1280 (1997).

    CAS  PubMed  Google Scholar 

  70. Sano, H. et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 55, 3785–3789 (1995).

    CAS  PubMed  Google Scholar 

  71. Wolff, H. et al. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58, 4997–5001 (1998).

    CAS  PubMed  Google Scholar 

  72. Huang, M. et al. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res. 58, 1208–1216 (1998).

    CAS  PubMed  Google Scholar 

  73. Gorsch, S.M., Memoli, V.A., Stukel, T.A., Gold, L.I. & Arrick, B.A. Immunohistochemical staining for transforming growth factor β1 associates with disease progression in human breast cancer. Cancer Res. 52, 6949–6952 (1992).

    CAS  PubMed  Google Scholar 

  74. Doran, T., Stuhlmiller, H., Kim, J.A., Martin, E.W.J. & Triozzi, P.L. Oncogene and cytokine expression of human colorectal tumors responding to immunotherapy. J. Immunother. 20, 372–376 (1997).

    CAS  PubMed  Google Scholar 

  75. Chen, W., Frank, M.E., Jin, W. & Wahl, S.M. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 14, 715–725 (2001)

    CAS  PubMed  Google Scholar 

  76. Fontana, A. et al. Transforming growth factor-β inhibits the generation of cytotoxic T cells in virus-infected mice. J. Immunol. 143, 3230–3234 (1989).

    CAS  PubMed  Google Scholar 

  77. Niehans, G.A. et al. Human lung carcinomas express Fas ligand. Cancer Res. 57, 1007–1012 (1997).

    CAS  PubMed  Google Scholar 

  78. Hahne, M. et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274, 1363–1366 (1996).

    CAS  PubMed  Google Scholar 

  79. O'Connell, J., O'Sullivan, G.C., Collins, J.K. & Shanahan, F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 184, 1075–1082 (1996).

    CAS  PubMed  Google Scholar 

  80. Strand, S. et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells–a mechanism of immune evasion? Nature Med. 2, 1361–1366 (1996).

    CAS  PubMed  Google Scholar 

  81. Andreola, G. et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med. 195, 1303–1316 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Restifo, N.P. Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape. Nature Med. 6, 493–495 (2000).

    CAS  PubMed  Google Scholar 

  83. Restifo, N.P. Countering the 'counterattack' hypothesis. Nature Med. 7, 259 (2001).

    CAS  PubMed  Google Scholar 

  84. Chappell, D.B., Zaks, T.Z., Rosenberg, S.A. & Restifo, N.P. Human melanoma cells do not express Fas (Apo-1/CD95) ligand. Cancer Res. 59, 59–62 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Arai, H., Gordon, D., Nabel, E.G. & Nabel, G.J. Gene transfer of Fas ligand induces tumor regression in vivo. Proc. Natl. Acad. Sci. USA 94, 13862–13867 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kang, S.M., Lin, Z., Ascher, N.L. & Stock, P.G. Fas ligand expression on islets as well as multiple cell lines results in accelerated neutrophilic rejection. Transplant. Proc. 30, 538 (1998).

  87. Drozdzik, M., Qian, C., Lasarte, J.J., Bilbao, R. & Prieto, J. Antitumor effect of allogenic fibroblasts engineered to express Fas ligand (FasL). Gene Ther. 5, 1622–1630 (1998).

    CAS  PubMed  Google Scholar 

  88. Chen, J.J., Sun, Y. & Nabel, G.J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282, 1714–1717 (1998).

    CAS  PubMed  Google Scholar 

  89. Zaks, T.Z., Chappell, D.B., Rosenberg, S.A. & Restifo, N.P. Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. J. Immunol. 162, 3273–3279 (1999).

    CAS  PubMed  Google Scholar 

  90. Cappello, P., Novelli, F., Forni, G. & Giovarelli, M. Death receptor ligands in tumors. J. Immunother. 25, 1–15 (2002).

    CAS  PubMed  Google Scholar 

  91. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Med. 8, 793–800 (2002).

    CAS  PubMed  Google Scholar 

  92. McHugh, R.S. & Shevach, E.M. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol. 168, 5979–5983 (2002).

    CAS  PubMed  Google Scholar 

  93. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    CAS  PubMed  Google Scholar 

  94. Sutmuller, R.P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Antony, P.A. & Restifo, N.P. Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy? J. Immunother. 25, 202–206 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol. 3, 135–142 (2002).

    CAS  Google Scholar 

  97. McHugh, R.S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 16, 311–323 (2002).

    CAS  PubMed  Google Scholar 

  98. Green, E.A., Choi, Y. & Flavell, R.A. Pancreatic lymph node-derived CD4+CD25+ Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16, 183–191 (2002).

    CAS  PubMed  Google Scholar 

  99. Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunol. 1, 515–520 (2000).

    CAS  Google Scholar 

  100. Moodycliffe, A.M., Nghiem, D., Clydesdale, G. & Ullrich, S.E. Immune suppression and skin cancer development: regulation by NKT cells. Nature Immunol. 1, 521–525 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hung T. Khong or Nicholas P. Restifo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khong, H., Restifo, N. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3, 999–1005 (2002). https://doi.org/10.1038/ni1102-999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1102-999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing