Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacogenomics in the clinic

Abstract

After decades of discovery, inherited variations have been identified in approximately 20 genes that affect about 80 medications and are actionable in the clinic. And some somatically acquired genetic variants direct the choice of 'targeted' anticancer drugs for individual patients. Current efforts that focus on the processes required to appropriately act on pharmacogenomic variability in the clinic are moving away from discovery and towards implementation of an evidenced-based strategy for improving the use of medications, thereby providing a cornerstone for precision medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inherited G6PD deficiency and haemolysis.
Figure 2: Medications affected by actionable pharmacogenes.
Figure 3: Bringing pharmacogenomic testing to the clinic.

Similar content being viewed by others

References

  1. Hughes, D. & Andersson, D. I. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nature Rev. Genet. 16, 459–471 (2015).

    CAS  PubMed  Google Scholar 

  2. Evans, W. E. & Relling, M. V. Moving towards individualized medicine with pharmacogenomics. Nature 429, 464–468 (2004). A review of pharmacogenomics, from discovery to the clinic.

    ADS  CAS  PubMed  Google Scholar 

  3. Alving, A. S., Carson, P. E., Flanagan, C. L. & Ickes, C. E. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124, 484–485 (1956).

    ADS  CAS  PubMed  Google Scholar 

  4. Roll-Hansen, N. The crucial experiment of Wilhelm Johannsen. Biol. Phil. 4, 303–329 (1989).

    Google Scholar 

  5. Motulsky, A. G. Drug reactions enzymes, and biochemical genetics. J. Am. Med. Assoc. 165, 835–837 (1957).

    CAS  PubMed  Google Scholar 

  6. Kalow, W. & Genest, K. A method for the detection of atypical forms of human serum cholinesterase; determination of dibucaine numbers. Can. J. Biochem. Physiol. 35, 339–346 (1957).

    CAS  PubMed  Google Scholar 

  7. Vogel, F. Moderne problem der humangenetik. Ergeb. Inn. Med. U. Kinderheik. 12, 52–125 (1959).

    Google Scholar 

  8. Vesell, E. S. & Page, J. G. Genetic control of drug levels in man: antipyrine. Science 161, 72–73 (1968).

    ADS  CAS  PubMed  Google Scholar 

  9. Hughes, H. B., Biehl, J. P., Jones, A. P. & Schmidt, L. H. Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. Am. Rev. Tuberc. 70, 266–273 (1954).

    CAS  PubMed  Google Scholar 

  10. Price Evans, D. A., Manley, K. A. & McKusick, V. A. Genetic control of isoniazid metabolism in man. Br. Med. J. 2, 485–491 (1960).

    Google Scholar 

  11. Blum, M., Demierre, A., Grant, D. M., Heim, M. & Meyer, U. A. Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc. Natl Acad. Sci. USA 88, 5237–5241 (1991).

    ADS  CAS  PubMed  Google Scholar 

  12. Vatsis, K. P., Martell, K. J. & Weber, W. W. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proc. Natl Acad. Sci. USA 88, 6333–6337 (1991).

    ADS  CAS  PubMed  Google Scholar 

  13. Gonzalez, F. J. et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331, 442–446 (1988).

    ADS  CAS  PubMed  Google Scholar 

  14. Ingelman-Sundberg, M. Pharmacogenomic biomarkers for prediction of severe adverse drug reactions. N. Engl. J. Med. 358, 637–639 (2008).

    CAS  PubMed  Google Scholar 

  15. Wang, L., McLeod, H. L. & Weinshilboum, R. M. Genomics and drug response. N. Engl. J. Med. 364, 1144–1153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yates, C. R. et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med. 126, 608–614 (1997).

    CAS  PubMed  Google Scholar 

  17. Marshall, E. Preventing toxicity with a gene test. Science 302, 588–590 (2003).

    CAS  PubMed  Google Scholar 

  18. Carr, D. F., Alfirevic, A. & Pirmohamed, M. Pharmacogenomics: Current state-of-the-art. Genes (Basel) 5, 430–443 (2014).

    Google Scholar 

  19. Pirmohamed, M., Kamali, F., Daly, A. K. & Wadelius, M. Oral anticoagulation: a critique of recent advances and controversies. Trends Pharmacol. Sci. 36, 153–163 (2015). A discussion of how to evaluate the benefits of individualized therapy, and how population differences can complicate this, for warfarin — one of the most important clinically actionable drugs.

    CAS  PubMed  Google Scholar 

  20. Burke, W. in Current Protocols in Human Genetics Unit 9.15, 9.15.1–9.15.7 (John Wiley & Sons, 2009).

    Google Scholar 

  21. Gaedigk, A. Complexities of CYP2D6 gene analysis and interpretation. Int. Rev. Psychiatry 25, 534–553 (2013).

    PubMed  Google Scholar 

  22. Grosse, S. D. & Khoury, M. J. What is the clinical utility of genetic testing? Genet. Med. 8, 448–450 (2006).

    PubMed  Google Scholar 

  23. Scott, S. A. Personalizing medicine with clinical pharmacogenetics. Genet. Med. 13, 987–995 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. Chen, Z., Liew, D. & Kwan, P. Effects of a HLA-B*15:02 screening policy on antiepileptic drug use and severe skin reactions. Neurology 83, 2077–2084 (2014).

    CAS  PubMed  Google Scholar 

  25. Relling, M. V. & Klein, T. E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 89, 464–467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Caudle, K. E. et al. Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr. Drug Metab. 15, 209–217 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Crews, K. R. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin. Pharmacol. Ther. 95, 376–382 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mallal, S. et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 358, 568–579 (2008).

    PubMed  Google Scholar 

  29. Martin, M. A. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and abacavir dosing: 2014 update. Clin. Pharmacol. Ther. 95, 499–500 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Province, M. A., Altman, R. B. & Klein, T. E. Interpreting the CYP2D6 results from the International Tamoxifen Pharmacogenetics Consortium. Clin. Pharmacol. Ther. 96, 144–146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ratain, M. J., Nakamura, Y. & Cox, N. J. CYP2D6 genotype and tamoxifen activity: understanding interstudy variability in methodological quality. Clin. Pharmacol. Ther. 94, 185–187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brauch, H. et al. Tamoxifen use in postmenopausal breast cancer: CYP2D6 matters. J. Clin. Oncol. 31, 176–180 (2013).

    CAS  PubMed  Google Scholar 

  33. Irvin, W. J. Jr et al. Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J. Clin. Oncol. 29, 3232–3239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brauch, H. & Schwab, M. Prediction of tamoxifen outcome by genetic variation of CYP2D6 in post-menopausal women with early breast cancer. Br. J. Clin. Pharmacol. 77, 695–703 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Province, M. A. et al. CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations. Clin. Pharmacol. Ther. 95, 216–227 (2014).

    CAS  PubMed  Google Scholar 

  36. Ehmann, F. et al. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenomics J. 15, 201–210 (2015).

    CAS  PubMed  Google Scholar 

  37. Tutton, R. Pharmacogenomic biomarkers in drug labels: what do they tell us? Pharmacogenomics 15, 297–304 (2014).

    CAS  PubMed  Google Scholar 

  38. Ishiguro, A., Yagi, S. & Uyama, Y. Characteristics of pharmacogenomics/biomarker-guided clinical trials for regulatory approval of anti-cancer drugs in Japan. J. Hum. Genet. 58, 313–316 (2013).

    CAS  PubMed  Google Scholar 

  39. Bosma, P. J. et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N. Engl. J. Med. 333, 1171–1175 (1995).

    CAS  PubMed  Google Scholar 

  40. Beutler, E. G6PD deficiency. Blood 84, 3613–3636 (1994).

    CAS  PubMed  Google Scholar 

  41. McCarthy J. J., McLeod, H. L. & Ginsburg, G. S. Genomic medicine: a decade of successes, challenges, and opportunities. Sci. Transl. Med. 5, 189sr4 (2013).

    PubMed  Google Scholar 

  42. Kinch, M. S., Haynesworth, A., Kinch, S. L. & Hoyer, D. An overview of FDA-approved new molecular entities: 1827–2013. Drug Discov. Today 19, 1033–1039 (2014).

    CAS  PubMed  Google Scholar 

  43. US Food and Drug Administration. Table of Pharmacogenomic Biomarkers in Drug Labeling. US Food and Drug Administration http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm (2015).

  44. PharmGKB. CPIC Genes/Drugs. PharmGKB https://www.pharmgkb.org/cpic/pairs (2015).

  45. Dunnenberger, H. M. et al. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annu. Rev. Pharmacol. Toxicol. 55, 89–106 (2015). A detailed discussion of a pre-emptive approach to the clinical implementation of pharmacogenetics that contains quantitative information on the use of medications that are subject to genetic actionability.

    CAS  PubMed  Google Scholar 

  46. Wheeler, H. E., Maitland, M. L., Dolan, M. E., Cox, N. J. & Ratain, M. J. Cancer pharmacogenomics: strategies and challenges. Nature Rev. Genet. 14, 23–34 (2013).

    CAS  PubMed  Google Scholar 

  47. McLeod, H. L. Cancer pharmacogenomics: early promise, but concerted effort needed. Science 339, 1563–1566 (2013). An analysis of the considerations for use of both somatic and inherited germline genetic lesions in prescription of anticancer drugs.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Look, A. T., Hayes, F. A., Nitschke, R., McWilliams, N. B. & Green, A. A. Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma. N. Engl. J. Med. 311, 231–235 (1984).

    CAS  PubMed  Google Scholar 

  49. Pui, C. H., Crist, W. M. & Look, A. T. Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood 76, 1449–1463 (1990).

    CAS  PubMed  Google Scholar 

  50. Senderowicz, A. M. & Pfaff, O. Similarities and differences in the oncology drug approval process between FDA and European Union with emphasis on in vitro companion diagnostics. Clin. Cancer Res. 20, 1445–1452 (2014).

    CAS  PubMed  Google Scholar 

  51. Pignatti, F. et al. Cancer drug development and the evolving regulatory framework for companion diagnostics in the European Union. Clin. Cancer Res. 20, 1458–1468 (2014).

    CAS  PubMed  Google Scholar 

  52. Flockhart, D. A., Skaar, T., Berlin, D. S., Klein, T. E. & Nguyen, A. T. Clinically available pharmacogenomics tests. Clin. Pharmacol. Ther. 86, 109–113 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stocco, G. et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin. Pharmacol. Ther. 85, 164–172 (2009).

    CAS  PubMed  Google Scholar 

  54. Yang, S. K. et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nature Genet. 46, 1017–1020 (2014).

    CAS  PubMed  Google Scholar 

  55. Yang, J. J. et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J. Clin. Oncol. 33, 1235–1242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheng, Q. et al. Karyotypic abnormalities create discordance of germline genotype and cancer cell phenotypes. Nature Genet. 37, 878–882 (2005).

    CAS  PubMed  Google Scholar 

  57. Bielinski, S. J. et al. Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time—using genomic data to individualize treatment protocol. Mayo Clin. Proc. 89, 25–33 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Gottesman, O. et al. The CLIPMERGE PGx Program: clinical implementation of personalized medicine through electronic health records and genomics-pharmacogenomics. Clin. Pharmacol. Ther. 94, 214–217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fernandez, C. A. et al. Concordance of DMET plus genotyping results with those of orthogonal genotyping methods. Clin. Pharmacol. Ther. 92, 360–365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnson, J. A. et al. Implementing personalized medicine: development of a cost-effective customized pharmacogenetics genotyping array. Clin. Pharmacol. Ther. 92, 437–439 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Oetjens, M. T. et al. Assessment of a pharmacogenomic marker panel in a polypharmacy population identified from electronic medical records. Pharmacogenomics 14, 735–744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Buchanan, J., Wordsworth, S. & Schuh, A. Issues surrounding the health economic evaluation of genomic technologies. Pharmacogenomics 14, 1833–1847 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schroeder, S. A. & Frist, W. Phasing out fee-for-service payment. N. Engl. J. Med. 368, 2029–2032 (2013).

    CAS  PubMed  Google Scholar 

  64. Levy, K. D. et al. Prerequisites to implementing a pharmacogenomics program in a large health-care system. Clin. Pharmacol. Ther. 96, 307–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Overby, C. L. et al. Physician attitudes toward adopting genome-guided prescribing through clinical decision support. J. Pers. Med. 4, 35–49 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Crawford, D. C. et al. eMERGEing progress in genomics—the first seven years. Front. Genet. 5, 184 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Cavallari, L. H. & Nutescu, E. A. Warfarin pharmacogenetics: to genotype or not to genotype, that is the question. Clin. Pharmacol. Ther. 96, 22–24 (2014).

    CAS  PubMed  Google Scholar 

  68. Chan, N. C. et al. Role of phenotypic and genetic testing in managing clopidogrel therapy. Blood 124, 689–699 (2014).

    CAS  PubMed  Google Scholar 

  69. Stanek, E. J. et al. Adoption of pharmacogenomic testing by US physicians: results of a nationwide survey. Clin. Pharmacol. Ther. 91, 450–458 (2012).

    CAS  PubMed  Google Scholar 

  70. Swen, J. J. et al. Pharmacogenetics: from bench to byte. Clin. Pharmacol. Ther. 83, 781–787 (2008).

    CAS  PubMed  Google Scholar 

  71. Swen, J. J. et al. Pharmacogenetics: from bench to byte—an update of guidelines. Clin. Pharmacol. Ther. 89, 662–673 (2011). A survey of clinically actionable germline genetic variants and affected medications, with basic prescribing advice.

    CAS  PubMed  Google Scholar 

  72. Yeh, P. et al. DNA-mutation inventory to refine and enhance cancer treatment (DIRECT): a catalog of clinically relevant cancer mutations to enable genome-directed anticancer therapy. Clin. Cancer Res. 19, 1894–1901 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Van Allen, E. M., Wagle, N. & Levy, M. A. Clinical analysis and interpretation of cancer genome data. J. Clin. Oncol. 31, 1825–1833 (2013). An overview of databases that can be used to match somatic cancer-specific genetic variants with targeted anticancer drugs.

    PubMed  PubMed Central  Google Scholar 

  74. Abrams, J. et al. in 2014 American Society of Clinical Oncology Education Book 71–76 (American Society of Clinical Oncology, 2014).

    Google Scholar 

  75. Agúndez, J. A., Esguevillas, G., Amo, G. & García-Martín, E. Clinical practice guidelines for translating pharmacogenomic knowledge to bedside. Focus on anticancer drugs. Front. Pharmacol. 5, 188 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Gordon, A. S. et al. Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset. Hum. Mol. Genet. 23, 1957–1963 (2014).

    CAS  PubMed  Google Scholar 

  77. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    CAS  PubMed  Google Scholar 

  78. Rehm, H. L. et al. ClinGen—the Clinical Genome Resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Whirl-Carrillo, M. et al. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92, 414–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Percha, B., & Altman, R. B. Inferring the semantic relationships of words within an ontology using random indexing: applications to pharmacogenomics. AMIA Annu. Symp. Proc. 2013, 1123–1132 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Samwald, M. & Freimuth, R. R. Making data on essential pharmacogenes available for every patient everywhere: the Medicine Safety Code initiative. Pharmacogenomics 14, 1529–1531 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bell, G. C. et al. Development and use of active clinical decision support for preemptive pharmacogenomics. J. Am. Med. Inform. Assoc. 21, e93–e99 (2014).

    PubMed  Google Scholar 

  83. Zhu, Q. et al. Harmonization and semantic annotation of data dictionaries from the Pharmacogenomics Research Network: a case study. J. Biomed. Inform. 46, 286–293 (2013).

    PubMed  Google Scholar 

  84. Overby, C. L. et al. Opportunities for genomic clinical decision support interventions. Genet. Med. 15, 817–823 (2013).

    PubMed  Google Scholar 

  85. Miñarro-Giménez, J. A., Blagec, K., Boyce, R. D., Adlassnig, K. P. & Samwald, M. An ontology-based, mobile-optimized system for pharmacogenomic decision support at the point-of-care. PLoS ONE 9, e93769 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  86. Haga, S. B. et al. Survey of genetic counselors and clinical geneticists' use and attitudes toward pharmacogenetic testing. Clin. Genet. 82, 115–120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Haga, S. B., Burke, W., Ginsburg, G. S., Mills, R. & Agans, R. Primary care physicians' knowledge of and experience with pharmacogenetic testing. Clin. Genet. 82, 388–394 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Weber, G. M., Mandl, K. D. & Kohane, I. S. Finding the missing link for big biomedical data. J. Am. Med. Assoc. 311, 2479–2480 (2014).

    CAS  Google Scholar 

  89. Hayden, E. C. Geneticists push for global data-sharing. Nature 498, 16–17 (2013).

    ADS  PubMed  Google Scholar 

  90. Prainsack, B. & Vayena, E. Beyond the clinic: 'direct-to-consumer' genomic profiling services and pharmacogenomics. Pharmacogenomics 14, 403–412 (2013).

    CAS  PubMed  Google Scholar 

  91. Caulfield, T. DTC genetic testing: pendulum swings and policy paradoxes. Clin. Genet. 81, 4–6 (2012).

    CAS  PubMed  Google Scholar 

  92. State of Hawaii Department of the Attorney General. State of Hawaii News Release 2014-09 http://ag.hawaii.gov/wp-content/uploads/2014/01/News-Release-2014-09.pdf (2014).

  93. Shuldiner, A. R. et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. J. Am. Med. Assoc. 302, 849–857 (2009). Primary findings that showed that CYP2C19 genetic variation affects the effectiveness and bleeding risk from clopidogrel, and led to an FDA 'black box warning' for the drug label.

    CAS  Google Scholar 

  94. Mega, J. L. et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. J. Am. Med. Assoc. 304, 1821–1830 (2010).

    CAS  Google Scholar 

  95. Manolio, T. A. & Green, E. D. Leading the way to genomic medicine. Am. J. Med. Genet. C. Semin. Med. Genet. 166C, 1–7 (2014).

    PubMed  Google Scholar 

  96. Manolio, T. A., Murray, M. F. & Inter-Society Coordinating Committee for Practitioner Education in Genomics. The growing role of professional societies in educating clinicians in genomics. Genet. Med. 16, 571–572 (2014).

    PubMed  Google Scholar 

  97. Korf, B. R. et al. Framework for development of physician competencies in genomic medicine: report of the Competencies Working Group of the Inter-Society Coordinating Committee for Physician Education in Genomics. Genet. Med. 16, 804–809 (2014).

    PubMed  Google Scholar 

  98. Wiener, C. M., Thomas, P. A., Goodspeed, E., Valle, D. & Nichols, D. G. “Genes to society”—the logic and process of the new curriculum for the Johns Hopkins University School of Medicine. Acad. Med. 85, 498–506 (2010).

    PubMed  Google Scholar 

  99. Manolio, T. A. et al. Global implementation of genomic medicine: we are not alone. Sci. Transl. Med. 7, 290ps13 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Becquemont, L. et al. Practical recommendations for pharmacogenomics-based prescription: 2010 ESF-UB Conference on Pharmacogenetics and Pharmacogenomics. Pharmacogenomics 12, 113–124 (2011).

    CAS  PubMed  Google Scholar 

  101. Shuldiner, A. R. et al. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: overcoming challenges of real-world implementation. Clin. Pharmacol. Ther. 94, 207–210 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pulley, J. M. et al. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin. Pharmacol. Ther. 92, 87–95 (2012). A description of the benefits and efficiency of implementing a large and innovative pre-emptive pharmacogenetics programme at a major medical centre.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. O'Donnell, P. H. et al. Adoption of a clinical pharmacogenomics implementation program during outpatient care—initial results of the University of Chicago “1,200 Patients Project”. Am. J. Med. Genet. C. Semin. Med. Genet. 166C, 68–75 (2014).

    PubMed  Google Scholar 

  104. Gottesman, O. et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet. Med. 15, 761–771 (2013).

    PubMed  PubMed Central  Google Scholar 

  105. Rasmussen-Torvik, L. J. et al. Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin. Pharmacol. Ther. 96, 482–489 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rattanavipapong, W., Koopitakkajorn, T., Praditsitthikorn, N., Mahasirimongkol, S. & Teerawattananon, Y. Economic evaluation of HLA-B*15:02 screening for carbamazepine-induced severe adverse drug reactions in Thailand. Epilepsia 54, 1628–1638 (2013).

    CAS  PubMed  Google Scholar 

  107. Toh, D. S. et al. Building pharmacogenetics into a pharmacovigilance program in Singapore: using serious skin rash as a pilot study. Pharmacogenomics J. 14, 316–321 (2014).

    CAS  PubMed  Google Scholar 

  108. Sukasem, C., Puangpetch, A., Medhasi, S. & Tassaneeyakul, W. Pharmacogenomics of drug-induced hypersensitivity reactions: challenges, opportunities and clinical implementation. Asian Pac. J. Allergy Immunol. 32, 111–123 (2014).

    CAS  PubMed  Google Scholar 

  109. Cooper, D. N. et al. Bridging genomics research between developed and developing countries: the Genomic Medicine Alliance. Pers. Med. 11, 615–623 (2014).

    ADS  CAS  Google Scholar 

  110. Dalabira, E. et al. DruGeVar: an online resource triangulating drugs with genes and genomic biomarkers for clinical pharmacogenomics. Public Health Genomics 17, 265–271 (2014).

    PubMed  Google Scholar 

  111. Bonifaz-Peña, V. et al. Exploring the distribution of genetic markers of pharmacogenomics relevance in Brazilian and Mexican populations. PLoS ONE 9, e112640 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  112. Relling, M. V. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin. Pharmacol. Ther. 96, 169–174 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their many colleagues who have collaborated in research to elucidate the pharmacogenomics of medications used to treat their patients, as well as those who have collaborated to translate pharmacogenomics to optimize the care of patients. They also thank the many patients and parents who have willingly participated in their research. This work was supported in part by NIH grants P50 GM115279, RO1 CA36401, R24 GM115264, RO1 CA142665, P30 CA21765 and by the American Lebanese Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary V. Relling.

Ethics declarations

Competing interests

The authors receive royalties from patent rights licensed by St. Jude Children's Research Hospital in relation to TPMT genetic testing.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Relling, M., Evans, W. Pharmacogenomics in the clinic. Nature 526, 343–350 (2015). https://doi.org/10.1038/nature15817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature15817

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research