Skip to main content

Advertisement

Log in

Human Papillomavirus in the HIV-Infected Host: Epidemiology and Pathogenesis in the Antiretroviral Era

  • HIV Pathogenesis and Treatment (AL Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Human papillomavirus (HPV) infection is associated with essentially all cervical cancers, 80–90 % of anal cancers, and a high proportion of oropharyngeal, vaginal, penile, and vulvar cancers. Malignancy is preceded by the development of precancerous lesions termed high-grade squamous intraepithelial lesions (HSIL). Men and women with human immunodeficiency virus (HIV) infection are at high risk of HPV-related malignancies. The incidence of anal cancer in particular has markedly risen during the antiretroviral era due to the increased longevity of patients with HIV and the absence of anal malignancy screening programs. HIV infection may facilitate initial HPV infection by disrupting epithelial cell tight junctions. Once infection is established, HIV may promote HSIL development via the up-regulation of HPV oncogene expression and impairment of the immune response needed to clear the lesion. HIV-infected women should be screened for cervical HSIL and cancer, and HIV-infected men and women should be considered for anal screening programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stanley M, Lowy DR, Frazer I. Chapter 12: prophylactic HPV vaccines: underlying mechanisms. Vaccine. 2006;24 Suppl 3:S3/106–13.

    CAS  Google Scholar 

  2. Schiffman M et al. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890–907.

    Article  CAS  PubMed  Google Scholar 

  3. Centers for Disease, C. and Prevention. Human papillomavirus-associated cancers—United States, 2004–2008. MMWR Morb Mortal Wkly Rep. 2012;61:258–61.

    Google Scholar 

  4. Chaturvedi AK et al. Risk of human papillomavirus-associated cancers among persons with AIDS. J Natl Cancer Inst. 2009;101(16):1120–30.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Frisch M, Biggar RJ, Goedert JJ. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst. 2000;92(18):1500–10.

    Article  CAS  PubMed  Google Scholar 

  6. Patel P et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med. 2008;148(10):728–36.

    Article  PubMed  Google Scholar 

  7. High KP et al. HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH Office of AIDS Research by the HIV and Aging Working Group. J Acquir Immune Defic Syndr. 2012;60 Suppl 1:S1–18.

    Article  CAS  PubMed  Google Scholar 

  8. Smith JS et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer. 2007;121(3):621–32.

    Article  CAS  PubMed  Google Scholar 

  9. Ferlay J, et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No.11 [Internet]. 2012; Available from: http://globocan.iarc.fr, accessed on 11/28/2014.

  10. Howlader N, et al. SEER Cancer Statistics Review, 1975–2011, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2011/, based on November 2013 SEER data submission, posted to the SEER web site, April 2014. 2014; Available from: http://seer.cancer.gov/csr/1975_2011/.

  11. International Collaboration of Epidemiological Studies of Cervical, C. Comparison of risk factors for invasive squamous cell carcinoma and adenocarcinoma of the cervix: collaborative reanalysis of individual data on 8,097 women with squamous cell carcinoma and 1,374 women with adenocarcinoma from 12 epidemiological studies. Int J Cancer. 2007;120(4):885–91.

    Article  Google Scholar 

  12. Castro KG et al. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep. 1992;41(RR-17):1–19.

    Google Scholar 

  13. Bower M, Mazhar D, Stebbing J. Should cervical cancer be an acquired immunodeficiency syndrome-defining cancer? J Clin Oncol. 2006;24(16):2417–9.

    Article  PubMed  Google Scholar 

  14. Clifford GM et al. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005;97(6):425–32.

    Article  PubMed  Google Scholar 

  15. Hleyhel M et al. Risk of AIDS-defining cancers among HIV-1-infected patients in France between 1992 and 2009: results from the FHDH-ANRS CO4 cohort. Clin Infect Dis. 2013;57(11):1638–47. Data from large French HIV cohort that summarizes the most recent incidence trends of AIDS-defining malignancies.

    Article  CAS  PubMed  Google Scholar 

  16. Mbulaiteye SM et al. Spectrum of cancers among HIV-infected persons in Africa: the Uganda AIDS-Cancer Registry Match Study. Int J Cancer. 2006;118(4):985–90.

    Article  CAS  PubMed  Google Scholar 

  17. Tanon A et al. The spectrum of cancers in West Africa: associations with human immunodeficiency virus. PLoS One. 2012;7(10):e48108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sasco AJ et al. The challenge of AIDS-related malignancies in sub-Saharan Africa. PLoS One. 2010;5(1):e8621.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Dhir AA et al. Spectrum of HIV/AIDS related cancers in India. Cancer Causes Control. 2008;19(2):147–53.

    Article  PubMed  Google Scholar 

  20. Guiguet M et al. Effect of immunodeficiency, HIV viral load, and antiretroviral therapy on the risk of individual malignancies (FHDH-ANRS CO4): a prospective cohort study. Lancet Oncol. 2009;10(12):1152–9.

    Article  CAS  PubMed  Google Scholar 

  21. Biggar RJ et al. AIDS-related cancer and severity of immunosuppression in persons with AIDS. J Natl Cancer Inst. 2007;99(12):962–72.

    Article  PubMed  Google Scholar 

  22. Franceschi S et al. Changing patterns of cancer incidence in the early- and late-HAART periods: the Swiss HIV Cohort Study. Br J Cancer. 2010;103(3):416–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shiels MS et al. Cancer burden in the HIV-infected population in the United States. J Natl Cancer Inst. 2011;103(9):753–62.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hoots BE et al. Human papillomavirus type distribution in anal cancer and anal intraepithelial lesions. Int J Cancer. 2009;124(10):2375–83.

    Article  CAS  PubMed  Google Scholar 

  25. Steinau M et al. Human papillomavirus prevalence in invasive anal cancers in the United States before vaccine introduction. J Low Genit Tract Dis. 2013;17(4):397–403. Used SEER registry to identify and perform HPV testing on anal cancer specimens. 90% of anal cancers are associated with HPV-infection, primarily HPV-16.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Darragh T, et al. The anal canal and perianus: HPV-related disease, in modern colposcopy: textbook and atlas E.J. Mayeaux and J. Thomas Cox, Editors. 2012, Lippincott, Williams, & Wilkins: Baltimore.

  27. Brewster DH, Bhatti LA. Increasing incidence of squamous cell carcinoma of the anus in Scotland, 1975–2002. Br J Cancer. 2006;95(1):87–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Robinson D, Coupland V, Moller H. An analysis of temporal and generational trends in the incidence of anal and other HPV-related cancers in Southeast England. Br J Cancer. 2009;100(3):527–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Nielsen A, Munk C, Kjaer SK. Trends in incidence of anal cancer and high-grade anal intraepithelial neoplasia in Denmark, 1978–2008. Int J Cancer. 2012;130(5):1168–73.

    Article  CAS  PubMed  Google Scholar 

  30. Jin F et al. Trends in anal cancer in Australia, 1982–2005. Vaccine. 2011;29(12):2322–7.

    Article  PubMed  Google Scholar 

  31. van der Zee RP et al. The increasing incidence of anal cancer: can it be explained by trends in risk groups? Neth J Med. 2013;71(8):401–11.

    PubMed  Google Scholar 

  32. Daling JR et al. Correlates of homosexual behavior and the incidence of anal cancer. JAMA. 1982;247(14):1988–90.

    Article  CAS  PubMed  Google Scholar 

  33. Daling JR et al. Sexual practices, sexually transmitted diseases, and the incidence of anal cancer. N Engl J Med. 1987;317(16):973–7.

    Article  CAS  PubMed  Google Scholar 

  34. Frisch M et al. Sexually transmitted infection as a cause of anal cancer. N Engl J Med. 1997;337(19):1350–8.

    Article  CAS  PubMed  Google Scholar 

  35. Saleem AM et al. Risk of anal cancer in a cohort with human papillomavirus-related gynecologic neoplasm. Obstet Gynecol. 2011;117(3):643–9.

    Article  PubMed  Google Scholar 

  36. Piketty C et al. Incidence of HIV-related anal cancer remains increased despite long-term combined antiretroviral treatment: results from the French hospital database on HIV. J Clin Oncol. 2012;30(35):4360–6. Data from large French HIV cohort that summarizes recent incidence trends for anal cancer in HIV-infected patients.

    Article  PubMed  Google Scholar 

  37. Silverberg MJ et al. Risk of anal cancer in HIV-infected and HIV-uninfected individuals in North America. Clin Infect Dis. 2012;54(7):1026–34. Recent incidence rates of anal cancer among HIV-infected patients in the US.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Silverberg MJ et al. HIV infection, immunodeficiency, viral replication, and the risk of cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(12):2551–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Crum-Cianflone NF et al. Anal cancers among HIV-infected persons: HAART is not slowing rising incidence. AIDS. 2010;24(4):535–43.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Shiels MS et al. Impact of the HIV epidemic on the incidence rates of anal cancer in the United States. J Natl Cancer Inst. 2012;104(20):1591–8.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Prevention, C.f.D.C.a. HIV surveillance report, 2011. 2013 November 28 2013]; Available from: http://www.cdc.gov/hiv/topics/surveillance/resources/reports/.

  42. Bertisch B et al. Risk factors for anal cancer in persons infected with HIV: a nested case-control study in the Swiss HIV Cohort Study. Am J Epidemiol. 2013;178(6):877–84.

    Article  PubMed  Google Scholar 

  43. Chiao EY et al. The impact of HIV viral control on the incidence of HIV-associated anal cancer. J Acquir Immune Defic Syndr. 2013;63(5):631–8.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Weaver BA. Epidemiology and natural history of genital human papillomavirus infection. J Am Osteopath Assoc. 2006;106(3 Suppl 1):S2–8.

    PubMed  Google Scholar 

  45. Dunne EF et al. Prevalence of HPV infection among females in the United States. JAMA. 2007;297(8):813–9.

    Article  CAS  PubMed  Google Scholar 

  46. Chin-Hong PV et al. Age-Specific prevalence of anal human papillomavirus infection in HIV-negative sexually active men who have sex with men: the EXPLORE study. J Infect Dis. 2004;190(12):2070–6.

    Article  PubMed  Google Scholar 

  47. Hernandez BY et al. Anal human papillomavirus infection in women and its relationship with cervical infection. Cancer Epidemiol Biomarkers Prev. 2005;14(11 Pt 1):2550–6.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Silverberg MJ et al. The impact of HIV infection and immunodeficiency on human papillomavirus type 6 or 11 infection and on genital warts. Sex Transm Dis. 2002;29(8):427–35.

    Article  PubMed  Google Scholar 

  49. Massad LS et al. Prevalence and predictors of squamous cell abnormalities in Papanicolaou smears from women infected with HIV-1. Women's Interagency HIV Study Group. J Acquir Immune Defic Syndr. 1999;21(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  50. Palefsky JM et al. Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women. J Natl Cancer Inst. 1999;91(3):226–36.

    Article  CAS  PubMed  Google Scholar 

  51. Jamieson DJ et al. Characterization of genital human papillomavirus infection in women who have or who are at risk of having HIV infection. Am J Obstet Gynecol. 2002;186(1):21–7.

    Article  PubMed  Google Scholar 

  52. Watts DH et al. Effects of bacterial vaginosis and other genital infections on the natural history of human papillomavirus infection in HIV-1-infected and high-risk HIV-1-uninfected women. J Infect Dis. 2005;191(7):1129–39.

    Article  PubMed  Google Scholar 

  53. de Pokomandy A et al. Prevalence, clearance, and incidence of anal human papillomavirus infection in HIV-infected men: the HIPVIRG cohort study. J Infect Dis. 2009;199(7):965–73.

    Article  PubMed  Google Scholar 

  54. Conley L et al. Factors associated with prevalent abnormal anal cytology in a large cohort of HIV-infected adults in the United States. J Infect Dis. 2010;202(10):1567–76.

    Article  CAS  PubMed  Google Scholar 

  55. Palefsky JM et al. Prevalence and risk factors for anal human papillomavirus infection in human immunodeficiency virus (HIV)-positive and high-risk HIV-negative women. J Infect Dis. 2001;183(3):383–91.

    Article  CAS  PubMed  Google Scholar 

  56. Piketty C et al. High prevalence of anal human papillomavirus infection and anal cancer precursors among HIV-infected persons in the absence of anal intercourse. Ann Intern Med. 2003;138(6):453–9.

    Article  PubMed  Google Scholar 

  57. Nyitray AG et al. Prevalence of and risk factors for anal human papillomavirus infection in men who have sex with women: a cross-national study. J Infect Dis. 2010;201(10):1498–508.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Strickler HD et al. Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J Natl Cancer Inst. 2005;97(8):577–86. First study to show that newly detected HPV infection occurs in celibate women, suggesting the reactivation of previously latent HPV infection.

    Article  PubMed  Google Scholar 

  59. Lillo FB et al. Human papillomavirus infection and associated cervical disease in human immunodeficiency virus-infected women: effect of highly active antiretroviral therapy. J Infect Dis. 2001;184(5):547–51.

    Article  CAS  PubMed  Google Scholar 

  60. Del Mistro A et al. Antiretroviral therapy and the clinical evolution of human papillomavirus-associated genital lesions in HIV-positive women. Clin Infect Dis. 2004;38(5):737–42.

    Article  PubMed  Google Scholar 

  61. Palefsky JM et al. Effect of highly active antiretroviral therapy on the natural history of anal squamous intraepithelial lesions and anal human papillomavirus infection. J Acquir Immune Defic Syndr. 2001;28(5):422–8.

    Article  CAS  PubMed  Google Scholar 

  62. Konopnicki D et al. Sustained viral suppression and higher CD4+ T-cell count reduces the risk of persistent cervical high-risk human papillomavirus infection in HIV-positive women. J Infect Dis. 2013;207(11):1723–9. Large cohort study of HIV-infected women with extended follow-up time. Shows very limited effect of ART in decreasing the risk of persistent cervical hr-HPV infection.

    Article  CAS  PubMed  Google Scholar 

  63. Blitz S et al. Evaluation of HIV and highly active antiretroviral therapy on the natural history of human papillomavirus infection and cervical cytopathologic findings in HIV-positive and high-risk HIV-negative women. J Infect Dis. 2013;208(3):454–62. Additional recent large cohort of HIV-infected women with extended follow-up time. Shows limited effect of ART in promoting regression of SIL.

    Article  CAS  PubMed  Google Scholar 

  64. Minkoff H et al. Influence of adherent and effective antiretroviral therapy use on human papillomavirus infection and squamous intraepithelial lesions in human immunodeficiency virus-positive women. J Infect Dis. 2010;201(5):681–90.

    Article  PubMed Central  PubMed  Google Scholar 

  65. van der Snoek EM et al. Use of highly active antiretroviral therapy is associated with lower prevalence of anal intraepithelial neoplastic lesions and lower prevalence of human papillomavirus in HIV-infected men who have sex with men. Sex Transm Dis. 2012;39(7):495–500.

    Article  PubMed  Google Scholar 

  66. The 1988 Bethesda System for reporting cervical/vaginal cytological diagnoses. National Cancer Institute Workshop. JAMA, 1989. 262(7): p. 931–4.

  67. Darragh TM et al. The Lower Anogenital Squamous Terminology Standardization Project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. J Low Genit Tract Dis. 2012;16(3):205–42. Describes the Lower Anogenital Terminology Standardization (LAST) project and new proposed terminology to classify HPV lesion.

    Article  PubMed  Google Scholar 

  68. Wright TC, Kurman RJ, and Ferenczy A. Precancerous lesions of the cervix, in Blaustein’s pathology of the female genital tract, Kurman RJ, Editor. 2002, Springer-Verlag: New York City. p. 277.

  69. Rodriguez AC et al. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J Natl Cancer Inst. 2008;100(7):513–7.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Committee on Practice, B.-G. ACOG practice bulletin number 131: screening for cervical cancer. Obstet Gynecol. 2012;120(5):1222–38.

    Google Scholar 

  71. Duerr A et al. Human papillomavirus-associated cervical cytologic abnormalities among women with or at risk of infection with human immunodeficiency virus. Am J Obstet Gynecol. 2001;184(4):584–90.

    Article  CAS  PubMed  Google Scholar 

  72. Chirenje ZM et al. Association of cervical SIL and HIV-1 infection among Zimbabwean women in an HIV/STI prevention study. Int J STD AIDS. 2002;13(11):765–8.

    Article  CAS  PubMed  Google Scholar 

  73. Ellerbrock TV et al. Incidence of cervical squamous intraepithelial lesions in HIV-infected women. JAMA. 2000;283(8):1031–7.

    Article  CAS  PubMed  Google Scholar 

  74. Palefsky JM et al. Anal intraepithelial neoplasia in the highly active antiretroviral therapy era among HIV-positive men who have sex with men. AIDS. 2005;19(13):1407–14.

    Article  PubMed  Google Scholar 

  75. Chin-Hong PV et al. Comparison of patient- and clinician-collected anal cytology samples to screen for human papillomavirus-associated anal intraepithelial neoplasia in men who have sex with men. Ann Intern Med. 2008;149(5):300–6.

    Article  PubMed  Google Scholar 

  76. Hessol NA et al. Anal intraepithelial neoplasia in a multisite study of HIV-infected and high-risk HIV-uninfected women. AIDS. 2009;23(1):59–70.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Kojic EM et al. Human papillomavirus infection and cytologic abnormalities of the anus and cervix among HIV-infected women in the study to understand the natural history of HIV/AIDS in the era of effective therapy (the SUN study). Sex Transm Dis. 2011;38(4):253–9.

    PubMed  Google Scholar 

  78. Palefsky JM. Antiretroviral therapy and anal cancer: the good, the bad, and the unknown. Sex Transm Dis. 2012;39(7):501–3.

    Article  PubMed  Google Scholar 

  79. de Pokomandy A et al. HAART and progression to high-grade anal intraepithelial neoplasia in men who have sex with men and are infected with HIV. Clin Infect Dis. 2011;52(9):1174–81.

    Article  PubMed  Google Scholar 

  80. Gunthard HF et al. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society-USA Panel. JAMA. 2014;312(4):410–25.

    Article  PubMed  Google Scholar 

  81. McCredie MR et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol. 2008;9(5):425–34. Describes New Zealand study that quantified risk of cervical HSIL progression in HIV-uninfected women.

    Article  PubMed  Google Scholar 

  82. Holowaty P et al. Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst. 1999;91(3):252–8.

    Article  CAS  PubMed  Google Scholar 

  83. Machalek DA et al. Anal human papillomavirus infection and associated neoplastic lesions in men who have sex with men: a systematic review and meta-analysis. Lancet Oncol. 2012;13(5):487–500. Uses data from meta-analysis to estimate yearly risk of developing anal cancer among HIV-infected and HIV-uninfected MSM with HSIL.

    Article  PubMed  Google Scholar 

  84. Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32 Suppl 1:S7–15.

    Article  CAS  PubMed  Google Scholar 

  85. Herfs M et al. Mucosal junctions: open doors to HPV and HIV infections? Trends Microbiol. 2011;19(3):114–20.

    Article  CAS  PubMed  Google Scholar 

  86. Zheng ZM, Baker CC. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci. 2006;11:2286–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Selvakumar R et al. Regression of papillomas induced by cottontail rabbit papillomavirus is associated with infiltration of CD8+ cells and persistence of viral DNA after regression. J Virol. 1997;71(7):5540–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Maglennon GA, McIntosh P, Doorbar J. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology. 2011;414(2):153–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Ojesina AI et al. Landscape of genomic alterations in cervical carcinomas. Nature. 2014;506(7488):371–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Barrow-Laing L, Chen W, Roman A. Low- and high-risk human papillomavirus E7 proteins regulate p130 differently. Virology. 2010;400(2):233–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Fang J, Zhang H, Jin S. Epigenetics and cervical cancer: from pathogenesis to therapy. Tumour Biol. 2014;35(6):5083–93.

    Article  CAS  PubMed  Google Scholar 

  92. Tugizov SM et al. HIV-associated disruption of mucosal epithelium facilitates paracellular penetration by human papillomavirus. Virology. 2013;446(1–2):378–88. In vitro study that shows how HIV-derived tat and gp120 disrupt epithelial tight-cell junctions which allow HPV pseudovirion infection of the basal cell l epithelium.

    Article  CAS  PubMed  Google Scholar 

  93. van der Burg SH, Palefsky JM. Human immunodeficiency virus and human papilloma virus—why HPV-induced lesions do not spontaneously resolve and why therapeutic vaccination can be successful. J Transl Med. 2009;7:108.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Brenchley JM, Douek DC. HIV infection and the gastrointestinal immune system. Mucosal Immunol. 2008;1(1):23–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Nowak RG et al. Increases in human papillomavirus detection during early HIV infection among women in Zimbabwe. J Infect Dis. 2011;203(8):1182–91. Cohort study showing a rapid rise in cervical HPV infection soon after HIV infection. Argues that immune dysregulation associated with acute HIV leads to the reactivation of previously latent HPV.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Wang C et al. Rapid rise in detection of human papillomavirus (HPV) infection soon after incident HIV infection among South African women. J Infect Dis. 2011;203(4):479–86. Cohort study showing a rapid rise in cervical HPV infection soon after HIV infection. Argues that immune dysregulation associated with acute HIV leads to the reactivation of previously latent HPV.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Borges AH, Dubrow R, Silverberg MJ. Factors contributing to risk for cancer among HIV-infected individuals, and evidence that earlier combination antiretroviral therapy will alter this risk. Curr Opin HIV AIDS. 2014;9(1):34–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Cristina Brickman declares that she has no conflict of interest.

Joel Palefsky reports grants, travel support, and board membership from Merck & Co., Inc.; grants from Hologic; and stocks from Aura Biosciences, and he is a consultant for Qiagen.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Brickman.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brickman, C., Palefsky, J.M. Human Papillomavirus in the HIV-Infected Host: Epidemiology and Pathogenesis in the Antiretroviral Era. Curr HIV/AIDS Rep 12, 6–15 (2015). https://doi.org/10.1007/s11904-014-0254-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-014-0254-4

Keywords

Navigation