Skip to main content

Advertisement

Log in

A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Abstract

Poloxamer 407 copolymer (ethylene oxide and propylene oxide blocks) shows thermoreversible properties, which is of the utmost interest in optimising drug formulation (fluid state at room temperature facilitating administration and gel state above sol–gel transition temperature at body temperature promoting prolonged release of pharmacological agents). Pharmaceutical evaluation consists in determining the rheological behaviour (flow curve or oscillatory studies), sol–gel transition temperature, in vitro drug release using either synthetic or physiological membrane and (bio)adhesion characteristics. Poloxamer 407 formulations led to enhanced solubilisation of poorly water-soluble drugs and prolonged release profile for many galenic applications (e.g., oral, rectal, topical, ophthalmic, nasal and injectable preparations) but did not clearly show any relevant advantages when used alone. Combination with other excipients like Poloxamer 188 or mucoadhesive polymers promotes Poloxamer 407 action by optimising sol–gel transition temperature or increasing bioadhesive properties. Inclusion of liposomes or micro(nano)particles in Poloxamer 407 formulations offers interesting prospects, as well. Besides these promising data, Poloxamer 407 has been held responsible for lipidic profile alteration and possible renal toxicity, which compromises its development for parenteral applications. In addition, new findings have demonstrated immuno-modulation and cytotoxicity-promoting properties of Poloxamer 407 revealing significant pharmacological interest and, hence, human trials are in progress to specify these potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. Ruel-Gariepy and J. C. Leroux. In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58(2):409–426 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. A. A. Koffi, F. Agnely, G. Ponchel, and J. L. Grossiord. Modulation of the rheological and mucoadhesive properties of thermosensitive poloxamer-based hydrogels intended for the rectal administration of quinine. Eur. J. Pharm. Sci. 27(4):328–335 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. G. Dumortier, N. El Kateb, M. Sahli, S. Kedjar, A. Boulliat, and J. C. Chaumeil. Development of a thermogelling ophthalmic formulation of cysteine. Drug Dev. Ind. Pharm. 32(1):63–72 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. G. Dumortier, M. Zuber, N. Barges, F. Chast, H. Dutertre, and J. C. Chaumeil. Lacrimal and plasmatic kinetics of morphine after an ophthalmic delivery of three different formulations. Drug Dev. Ind. Pharm. 20(7):1147–1158 (1994).

    CAS  Google Scholar 

  5. R. Rowe, P. Sheskey, and S. Owen. Pharmaceutical Handbook of Pharmaceutical Excipients, 5th edn., Pharmaceutical, London UK and American Pharmaceutical Association, Washington, USA, 2005.

    Google Scholar 

  6. A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release. 82(2–3):189–212 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Z. Takats, K. Vekey, and L. Hegedus. Qualitative and quantitative determination of poloxamer surfactants by mass spectrometry. Rapid Commun. Mass Spectrom. 15(10):805–810 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. S. M. Moghimi and A. C. Hunter. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 18(10):412–420 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. G. Dumortier, J. L. Grossiord, M. Zuber, G. Couarraze, and J. C. Chaumeil. Thermoreversible morphine gel. Drug Dev. Ind. Pharm. 17(9):1255–1265 (1991).

    CAS  Google Scholar 

  10. J. Juhasz, V. Lenaerts, P. Raymond, and H. Ong. Diffusion of rat atrial natriuretic factor in thermoreversible poloxamer gels. Biomaterials 10(4):265–268 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. T. Liu and B. Chu. Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: FCC to BCC phase transition. J. Appl. Cryst. 33:727–730 (2000).

    Article  CAS  Google Scholar 

  12. T. Moore, S. Croy, S. Mallapragada, and N. Pandit. Experimental investigation and mathematical modeling of Pluronic F127 gel dissolution, drug release in stirred systems. J. Control. Release 67(2–3):191–202 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. S. D. Desai and J. Blanchard. In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine. J. Pharm. Sci. 87(2):226–230 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. E. Dimitrova, S. Bogdanova, M. Mitcheva, I. Tanev, and E. Minkov. Development of model aqueous ophthalmic solution of indomethacin. Drug Dev. Ind. Pharm. 26(12):1297–1301 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. M. L. Veyries, G. Couarraze, S. Geiger, F. Agnely, L. Massias, B. Kunzli, and F. Faurisson. Controlled release of vancomycin from poloxamer 407 gels. Int. J. Pharm. 192(2):183–193 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. W. Saski and S. G. Shah. Availability of drug in the presence of surface active agents. I. Critical micelle concentration of some oxyethylene–oxypropylene polymers. J. Pharm. Sci. 54:71–74 (1965).

    Article  PubMed  CAS  Google Scholar 

  17. K. Huang, B. P. Lee, D. R. Ingram, and P. B. Messersmith. Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. Biomacromolecules 3(2):397–406 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. N. Pandit, T. Trygstad, S. Croy, M. Bohorquez, and C. Koch. Effect of salts on the micellization, clouding, and solubilization behavior of Pluronic F127 solutions. J. Colloid Interface Sci. 222(2):213–220 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. J. A. Anderson. Micelle formation by oxyethylene–oxypropylene polymers. Pharm. Acta Helv. 47:304–308 (1972).

    PubMed  CAS  Google Scholar 

  20. D. Attwood, J.H. Collett, and C.J. Tait. The micellar properties of the poly(oxyethylene)–poly(oxypropylene) copolymer Pluronic F 127 in water and electrolyte solution. Int. J. Pharm. 26:25–33 (1985).

    Article  CAS  Google Scholar 

  21. M. Bohorquez, C. Koch, T. Trygstad, and N. Pandit. A study of the temperature-dependent micellization of Pluronic F127. J. Colloid Interface Sci. 216(1):34–40 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. C. McDonald and C. K. Wong. The effect of temperature on the micellar properties of a polyoxyethylene–polyoxypropylene polymer in water. J. Pharm. Pharmacol. 26:556–557 (1974).

    CAS  Google Scholar 

  23. C. McDonald and C. K. Wong. Surface tension and light scattering studies on polyoxyethylene–polyoxypropylene copolymers in water. Aust. J. Pharm. Sci. 6:85–89 (1977).

    CAS  Google Scholar 

  24. J. M. Barichello, M. Morishita, K. Takayama, Y. Chiba, S. Tokiwa, and T. Nagai. Enhanced rectal absorption of insulin-loaded Pluronic F-127 gels containing unsaturated fatty acids. Int. J. Pharm. 183(2):125–132 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. J. M. Barichello, M. Morishita, K. Takayama, and T. Nagai. Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. Int. J. Pharm. 184(2):189–198 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. R. G. Strickley. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21(2):201–230 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. S. C. Shin and C. W. Cho. Physicochemical characterizations of piroxicam–poloxamer solid dispersion. Pharm. Dev. Technol. 2(4):403–407 (1997).

    PubMed  CAS  Google Scholar 

  28. S. Chutimaworapan, G. C. Ritthidej, E. Yonemochi, T. Oguchi, and K. Yamamoto. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev. Ind. Pharm. 26(11):1141–1150 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. C. Rouchotas, O. E. Cassidy, and G. Rowley. Comparison of surface modification and solid dispersion techniques for drug dissolution. Int. J. Pharm. 195(1–2):1–6 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. T. L. Rogers, K. P. Johnston, and R. O. Williams. Physical stability of micronized powders produced by spray-freezing into liquid (SFL) to enhance the dissolution of an insoluble. Drug Pharm. Dev. Technol. 8(2):187–197(2003).

    Article  CAS  Google Scholar 

  31. T. L. Rogers, A. C. Nelsen, M. Sarkari, T. J. Young, K. P. Johnston, and R. O. Williams. Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology, spray-freezing into liquid with atmospheric freeze-drying. Pharm. Res. 20(3):485–493 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. T. L. Rogers, K. A. Overhoff, P. Shah, P. Santiago, M. J. Yacaman, K. P. Johnston, and R. O. Williams. Micronized powders of a poorly water soluble drug produced by a spray-freezing into liquid-emulsion process. Eur. J. Pharm. Biopharm. 55 (2):161–172 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. M. L. Veyries, F. Faurisson, M. L. Joly-Guillou, and B. Rouveix. Control of staphylococcal adhesion to polymethylmethacrylate and enhancement of susceptibility to antibiotics by poloxamer 407. Antimicrob. Agents Chemother. 44 (4):1093–1096 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. P. Gilbert, M. V. Jones, D. G. Allison, S. Heys, T. Maira, and P. Wood. The use of poloxamer hydrogels for the assessment of biofilm susceptibility towards biocide treatments. J. Appl. Microbiol. 85(6):985–990 (1998).

    PubMed  CAS  Google Scholar 

  35. J. Juhasz, V. Lenaerts, D. Raymond, and O. Huy. Diffusion of natirel factor in thermoreversible poloxamer gels. Biomaterials 2:365–369 (1986).

    Google Scholar 

  36. E. A. Pec, Z. G. Wout, and T. P. Johnston. Biological activity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat. J. Pharm. Sci. 81(7):626–630 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. P. L. Wang and T. P. Johnston. Enhanced stability of two model proteins in an agitated solution environment using poloxamer 407. J. Parenter. Sci. Technol. 47(4):183–189 (1993).

    PubMed  CAS  Google Scholar 

  38. L. E. Bromberg. Interactions among proteins and hydrophobically modified polyelectrolytes. J. Pharm. Pharmacol. 53(4):541–547 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. M. Katakam and A. K. Banga. Use of poloxamer polymers to stabilize recombinant human growth hormone against various processing stresses. Pharm. Dev. Technol. 2(2):143–149 (1997).

    PubMed  CAS  Google Scholar 

  40. L. P. Stratton, A. Dong, M. C. Manning, and J. F. Carpenter. Drug delivery matrix containing native protein precipitates suspended in a poloxamer gel. J. Pharm. Sci. 86(9):1006–1010 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. W. J. Lin and L. I. Huang. Influence of pluronics on protein-loaded poly(epsilon-caprolactone) microparticles. J. Microencapsul. 18(2):191–197 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. C. Sturesson and J. Carlfors. Incorporation of protein in PLG-microspheres with retention of bioactivity. J. Control. Release 67(2–3):171–178 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. M. C. Woodle, M. S. Newman, and F. J. Martin. Liposome leakage and blood circulation, comparison of adsorbed block copolymers with covalent attachment of PEG. Int. J. Pharm. 88:327–34 (1992).

    Article  CAS  Google Scholar 

  44. J. D. Castile and K. M. Taylor. Factors affecting the size distribution of liposomes produced by freeze–thaw extrusion. Int. J. Pharm. 188(1):87–95 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. J. D. Castile, K. M. Taylor, and G. Buckton. A high sensitivity differential scanning calorimetry study of the interaction between poloxamers and dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes. Int. J. Pharm. 182(1):101–110 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. J. D. Castile, K. M. Taylor, and G. Buckton. The influence of incubation temperature and surfactant concentration on the interaction between dimyristoylphosphatidylcholine liposomes and poloxamer surfactants. Int. J. Pharm. 221(1–2):197–209 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. P. Chandaroy, A. Sen, P. Alexandridis, and S. W. Hui. Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome–cell adhesion. Biochim. Biophys. Acta 1559(1):32–42 (2002).

    Article  PubMed  CAS  Google Scholar 

  48. L. Olivieri, M. Seiller, L. Bromberg, M. Besnard, T. N. Duong, and J. L. Grossiord. Optimization of a thermally reversible W/O/W multiple emulsion for shear-induced drug release. J. Control. Release 88(3):401–412 (2003).

    Article  PubMed  CAS  Google Scholar 

  49. C. Charrueau, C. Tuleu, V. Astre, J. L. Grossiord, and J. C. Chaumeil. Poloxamer 407 as a thermogelling and adhesive polymer for rectal administration of short-chain fatty acids. Drug Dev. Ind. Pharm. 27(4):351–357 (2001).

    Article  PubMed  CAS  Google Scholar 

  50. C. S. Yong, J. Choi, Q. Z. Quan, J. D. Rhee, C. K. Kim, S. J. Lim, K. M. Kim, P. S. Oh, and H. G. Choi. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium. Int. J. Pharm. 226(1–2):195–205 (2001).

    Article  PubMed  CAS  Google Scholar 

  51. J. M. Ryu, S. J. Chung, M. H. Lee, C. K. Kim, and C. K. Shim. Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum. J. Control. Release 59(2):163–172 (1999).

    Article  PubMed  CAS  Google Scholar 

  52. H. Choi, M. Lee, M. Kim, and C. Kim. Effect of additives on the physicochemical properties of liquid suppository bases. Int. J. Pharm. 190(1):13–19 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. A. M. Le Ray, P. Iooss, A. Gouyette, V. Vonarx, T. Patrice, and C. Merle. Development of a “continuous-flow adhesion cell” for the assessment of hydrogel adhesion. Drug Dev. Ind. Pharm. 25(8):897–904 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. E. Y. Kim, Z. G. Gao, J. S. Park, H. Li, and K. Han. rhEGF/HP-beta-CD complex in poloxamer gel for ophthalmic delivery. Int. J. Pharm. 233(1–2):159–167 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. L. Bourre, S. Thibaut, A. Briffaud, Y. Lajat, and T. Patrice. Potential efficacy of a delta 5-aminolevulinic acid thermosetting gel formulation for use in photodynamic therapy of lesions of the gastrointestinal tract. Pharmacol. Res. 45(2):159–165 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. S. S. Pisal, A. R. Paradkar, K. R. Mahadik, and S. S. Kadam. Pluronic gels for nasal delivery of Vitamin B12. Part I, preformulation study. Int. J. Pharm. 270(1–2):37–45 (2004).

    Article  PubMed  CAS  Google Scholar 

  57. J. C. Gilbert, J. L. Richarson, M. C. Davies, and K. J. Palin. The effect of solutes and polymers on the gelation properties of Puronic F-127 solutions for controlled drug delivery. J. Control. Release 5:113–118 (1987).

    Article  CAS  Google Scholar 

  58. J. Y. Chang, Y. K. Oh, H. G. Choi, Y. B. Kim, and C. K. Kim. Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions. Int. J. Pharm. 241(1):155–163 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. A. Shawesh, S. Kallioinen, O. Antikainen, and J. Yliruusi. Influence of storage time and temperature on the stability of indomethacin Pluronic F-127 gels. Pharmazie 57(10):690–694 (2002).

    PubMed  CAS  Google Scholar 

  60. S. C. Chi and H. W. Jun. Anti-inflammatory activity of ketoprofen gel on carrageenan-induced paw edema in rats. J. Pharm. Sci. 79:974–977 (1990).

    Article  PubMed  CAS  Google Scholar 

  61. S. C. Chi and H. W. Jun. Release rates of ketoprofen from poloxamer gels in a membraneless diffusion cell. J. Pharm. Sci. 80(3):280–283 (1991).

    Article  PubMed  CAS  Google Scholar 

  62. S.C. Miller and B.R. Drabik. Rheological properties of poloxamer vehicles. Int. J. Pharm. 18:269–276. (1984).

    Article  CAS  Google Scholar 

  63. V. Lenaerts, C. Triqueneaux, M. Quarton, F. Rieg-Falson, and P. Couvreur. Temperature-dependant rheological behavior of Puronic F-127 aqueous solutions. Int. J. Pharm. 39:121–127 (1987).

    Article  CAS  Google Scholar 

  64. K. Edsman, J. Carlfors, and R. Petersson. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur. J. Pharm. Sci. 6(2):105–112 (1998).

    Article  PubMed  CAS  Google Scholar 

  65. G. Wei, H. Xu, P. T. Ding, S. M. Li, and J. M. Zheng. Thermosetting gels with modulated gelation temperature for ophthalmic use, the rheological and gamma scintigraphic studies J. Control. Release 83(1):65–74 (2002).

    Article  PubMed  CAS  Google Scholar 

  66. E. J. Ricci, M. V. Bentley, M. Farah, R. E. Bretas, and J. M. Marchetti. Rheological characterization of Poloxamer 407 lidocaine hydrochloride gels. Eur. J. Pharm. Sci. 17(3):161–167 (2002).

    Article  PubMed  CAS  Google Scholar 

  67. A. Cabana, A. Aït-Kadi, and J. Juhász. Study of the gelation process of polyethylene oxidea–polypropylene oxideb–polyethylene oxidea (poloxamer 407) aqueous solutions. J. Colloid Interface Sci. 190:307–312 (1997).

    Article  PubMed  CAS  Google Scholar 

  68. R. Bhardwaj and J. Blanchard. Controlled-release delivery system for the alpha-MSH analog melanotan-I using poloxamer 407. J. Pharm. Sci. 85(9):915–919 (1996).

    Article  PubMed  CAS  Google Scholar 

  69. Y. J. Park, C. S. Yong, H. M. Kim, J. D. Rhee, Y. K. Oh, C. K. Kim, and H. G. Choi. Effect of sodium chloride on the release, absorption and safety of diclofenac sodium delivered by poloxamer gel. Int. J. Pharm. 263(1–2):105–111 (2003).

    Article  PubMed  CAS  Google Scholar 

  70. A. M. El Gendy, H. W. Jun, and A. A. Kassem. In vitro release studies of flurbiprofen from different topical formulations. Drug Dev. Ind. Pharm. 28(7):823–831 (2002).

    Article  PubMed  CAS  Google Scholar 

  71. A. Paavola, I. Kilpelainen, J. Yliruusi, and P. Rosenberg. Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. Int. J. Pharm. 199(1):85–93 (2000).

    Article  PubMed  CAS  Google Scholar 

  72. A. Takahashi, S. Suzuki, N. Kawasaki, W. Kubo, S. Miyazaki, R. Loebenberg, J. Bachynsky, and D. Attwood. Percutaneous absorption of non-steroidal anti-inflammatory drugs from in situ gelling xyloglucan formulations in rats. Int. J. Pharm. 246(1–2):179–186 (2002).

    Article  PubMed  CAS  Google Scholar 

  73. T. P. Johnston, M. A. Punjabi, and C. J. Froelich. Sustained delivery of interleukin-2 from a poloxamer 407 gel matrix following intraperitoneal injection in mice. Pharm. Res. 9(3):425–434 (1992).

    Article  PubMed  CAS  Google Scholar 

  74. M. Morishita, J. M. Barichello, K. Takayama, Y. Chiba, S. Tokiwa, and T. Nagai. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int. J. Pharm. 212(2):289–293 (2001).

    Article  PubMed  CAS  Google Scholar 

  75. S. Proniuk, S. E. Dixon, and J. Blanchard. Investigation of the utility of an in vitro release test for optimizing semisolid dosage forms. J. Pharm. Dev. Technol. 6(3):469–476 (2001).

    Article  CAS  Google Scholar 

  76. A. Paavola, J. Yliruusi, Y. Kajimoto, E. Kalso, T. Wahlstrom, and P. Rosenberg. Controlled release of lidocaine from injectable gels and efficacy in rat sciatic nerve block. Pharm. Res. 12(12):1997–2002 (1995).

    Article  PubMed  CAS  Google Scholar 

  77. P. C. Chen, D. S. Kohane, Y. J. Park, R. H. Bartlett, R. Langer, and V. C. Yang. Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects. J. Biomed. Mater. Res. 70A(3):459–466 (2004).

    Article  CAS  Google Scholar 

  78. E. J. Ricci, L. O. Lunardi, D. M. Nanclares, and J. M. Marchetti. Sustained release of lidocaine from Poloxamer 407 gels. Int. J. Pharm. 288(2):235–244 (2005).

    Article  PubMed  CAS  Google Scholar 

  79. T. Abe, M. Sasaki, H. Nakajima, M. Ogita, H. Naitou, A. Nagase, K. Taguchi, and S. Miyazaki. Evaluation of pluronic F127 as a base for gradual release of anticancer drug. Gan To Kagaku Ryoho 17(8):1546–1550 (1990).

    PubMed  CAS  Google Scholar 

  80. A. Bochot, E. Fattal, A. Gulik, G. Couarraze, and P. Couvreur. Liposomes dispersed within a thermosensitive gel, a new dosage form for ocular delivery of oligonucleotides. Pharm. Res. 15(9):1364–1369 (1998).

    Article  PubMed  CAS  Google Scholar 

  81. M. M. Amiji, P. K. Lai, D. B. Shenoy, and M. Rao. Intratumoral administration of paclitaxel in an in situ gelling poloxamer 407 formulation. Pharm. Dev. Technol. 7(2):195–202 (2002).

    Article  PubMed  CAS  Google Scholar 

  82. S. D. Desai and J. Blanchard. Evaluation of pluronic F127-based sustained-release ocular delivery systems for pilocarpine using the albino rabbit eye model. J. Pharm. Sci. 87(10):1190–1195 (1998).

    Article  PubMed  CAS  Google Scholar 

  83. S. Miyazaki, S. Suzuki, N. Kawasaki, K. Endo, A. Takahashi, and D. Attwood. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int. J. Pharm. 229(1–2):29–36 (2001).

    Article  PubMed  CAS  Google Scholar 

  84. S. C. Shin, C. W. Cho, and H. K. Choi. Permeation of piroxicam from the poloxamer gels. Drug Dev. Ind. Pharm. 25(3):273–278 (1999).

    Article  PubMed  CAS  Google Scholar 

  85. F. Fawaz, A. Koffi, M. Guyot, and P. Millet. Comparative in vitroin vivo study of two quinine rectal gel formulations. Int. J. Pharm. 280(1–2):151–162 (2004).

    Article  PubMed  CAS  Google Scholar 

  86. A. H. El-Kamel. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int. J. Pharm. 241(1):47–55 (2002).

    Article  PubMed  CAS  Google Scholar 

  87. S. C. Shin and J. Y. Kim. Enhanced permeation of triamcinolone acetonide through the buccal mucosa. Eur. J. Pharm. Biopharm. 50(2):217–220 (2000).

    Article  CAS  Google Scholar 

  88. K. A. Fults and T. P. Johnston. Sustained-release of urease from a poloxamer gel matrix. J. Parenter. Sci. Technol. 44(2):58–65 (1990).

    PubMed  CAS  Google Scholar 

  89. B. C. Anderson, N. K. Pandit, and S. K. Mallapragada. Understanding drug release from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) gels. J. Control. Release 70(1–2):157–167 (2001).

    Article  PubMed  CAS  Google Scholar 

  90. X. Xu and P. I. Lee. Programmable drug delivery from an erodible association polymer system. Pharm. Res. 10(8):1144–1152 (1993).

    Article  PubMed  CAS  Google Scholar 

  91. Y. Mao, M. J. Thompson, Q. Wang, and E. W. Tsai. Quantitation of poloxamers in pharmaceutical formulations using size exclusion chromatography and colorimetric methods J. Pharm. Biomed. Anal. 35(5):1127–1142 (2004).

    Article  PubMed  CAS  Google Scholar 

  92. S. C. Shin, E. Y. Shin, and C. W. Cho. Enhancing effects of fatty acids on piroxicam permeation through rat skins. Drug Dev. Ind. Pharm. 26(5):563–566 (2000).

    Article  PubMed  CAS  Google Scholar 

  93. S. C. Shin, C. W. Cho, and I. J. Oh. Effects of non-ionic surfactants as permeation enhancers towards piroxicam from the poloxamer gel through rat skins. Int. J. Pharm. 222(2):199–203 (2001).

    Article  PubMed  CAS  Google Scholar 

  94. S. C. Shin, J. Y. Kim, and I. J. Oh. Mucoadhesive and physicochemical characterization of Carbopol–Poloxamer gels containing triamcinolone acetonide. Drug Dev. Ind. Pharm. 26(3):307–312 (2000).

    Article  PubMed  CAS  Google Scholar 

  95. P. Chetoni, L. Panichi, S. Burgalassi, U. Benelli, and M. F. Saettone. Pharmacokinetics and anti-inflammatory activity in rabbits of a novel indomethacin ophthalmic solution. J. Ocular Pharmacol. Ther. 16(4):363–372 (2000).

    Article  CAS  Google Scholar 

  96. J. W. Kwon, Y. K. Han, W. J. Lee, C. S. Cho, S. J. Paik, D. I. Cho, J. H. Lee, and W. R. Wee. Biocompatibility of poloxamer hydrogel as an injectable intraocular lens: a pilot study. J. Cataract Refract. Surg. 31(3):607–613 (2005).

    Article  PubMed  Google Scholar 

  97. I. Pepic, N. Jalsenjak and I. Jalsenjak. Micellar solutions of triblock copolymer surfactants with pilocarpine. Int. J. Pharm. 272(1–2):57–64 (2004).

    Article  PubMed  CAS  Google Scholar 

  98. S. D. Desai and J. Blanchard. Pluronic F127-based ocular delivery system containing biodegradable polyisobutylcyanoacrylate nanocapsules of pilocarpine. Drug Deliv. 7(4):201–207 (2000).

    Article  PubMed  CAS  Google Scholar 

  99. R. M. Nalbandian, R. L. Henry, and H. S. Wilks. Artificial skin II. Pluronic F-127 silver nitrate or silver lactate gel in the treatment of thermal burns. J. Biomed. Mater. Res. 6:583–590 (1972).

    Article  PubMed  CAS  Google Scholar 

  100. L. H. Marsh, C. Alexander, M. Coke, P. W. Dettmar, M. Havler, T. G .Nevell, J. D. Smart, B. Timmins, and J. Tsibouklis. Adsorbed pluronics on the skin of human volunteers, effects on bacterial adhesion. Int. J. Pharm. 251(1–2):155–163 (2003).

    Article  PubMed  CAS  Google Scholar 

  101. S. Miyazaki, T. Tobiyama, M. Takada, and D. Attwood. Percutaneous absorption of indomethacin from pluronic F127 gels in rats. J. Pharm. Pharmacol. 47(6):455–457 (1995).

    PubMed  CAS  Google Scholar 

  102. S. Shin, C. Cho, and I. Oh. Enhanced efficacy by percutaneous absorption of piroxicam from the poloxamer gel in rats. Int. J. Pharm. 193(2):213–218 (2000).

    Article  Google Scholar 

  103. H. Suh, H. W. Jun, M. T. Dzimianski, and G. W. Lu. Pharmacokinetic and local tissue disposition studies of naproxen—following topical and systemic administration in dogs and rats. Biopharm. Drug Dispos. 18(7):623–633 (1997).

    Article  PubMed  CAS  Google Scholar 

  104. G. W. Lu, H. W. Jun, M. T. Dzimianski, H. C. Qiu, and J. W. McCall. Pharmacokinetic studies of methotrexate in plasma and synovial fluid following i.v. bolus and topical routes of administration in dogs. Pharm. Res. 12(10):1474–1477 (1995).

    Article  PubMed  CAS  Google Scholar 

  105. A. F. El-Kattan, C. S. Asbill, N. Kim, and B. B. Michniak. Effect of formulation variables on the percutaneous permeation of ketoprofen from gel formulations. Drug Deliv. 7(3):147–153 (2000).

    Article  PubMed  CAS  Google Scholar 

  106. P. Wuthrich, M. Martenet, and P. Buri. Effect of formulation additives upon the intranasal bioavailability of a peptide drug, tetracosactide (ACTH1-24). Pharm. Res. 11(2):278–282 (1994).

    Article  PubMed  CAS  Google Scholar 

  107. J. G. Wenzel, K. S. Balaji, K. Koushik, C. Navarre, S. Duran, C. H. Rahe, and U. B. Kompella. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J. Control. Release 85(1–3):51–59 (2002).

    Article  PubMed  CAS  Google Scholar 

  108. A. B. Saim, Y. Cao, Y. Weng, C. N. Chang, M. A. Vacanti, C. A. Vacanti, and R. D. Eavey. Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 110(10):1694–1697 (2000).

    Article  PubMed  CAS  Google Scholar 

  109. Y. Wang, S. Liu, C. Y. Li, and F. Yuan. A novel method for viral gene delivery in solid tumors. Cancer Res. 65(17):7541–7545 (2005).

    PubMed  CAS  Google Scholar 

  110. S. N. Robinson, J. M. Chavez, J. M. Blonder, V. M. Pisarev, R. L. Mosley, H. Sang, G. J. Rosenthal, and J. E. Talmadge. Hematopoietic progenitor cell mobilization in mice by sustained delivery of granulocyte colony-stimulating factor. J. Interferon Cytokine Res. 25(8):490–500 (2005).

    Article  PubMed  CAS  Google Scholar 

  111. J. Raymond, A. Metcalfe, I. Salazkin, and A. Schwarz. Temporary vascular occlusion with poloxamer 407. Biomaterials 25(18):3983–3989 (2004).

    Article  PubMed  CAS  Google Scholar 

  112. M. Varshney, T. E. Morey, D. O. Shah, J. A. Flint, B. M. Moudgil, C. N. Seubert, and D. M. Dennis. Pluronic microemulsions as nanoreservoirs for extraction of bupivacaine from normal saline. J. Am. Chem. Soc. 126(16):5108–5112 (2004).

    Article  PubMed  CAS  Google Scholar 

  113. E. B. Fowler, M. F. Cuenin, S. D. Hokett, M. E. Peacock, J. C. McPherson, T. R. Dirksen, M. Sharawy, and M. A. Billman. Evaluation of pluronic polyols as carriers for grafting materials, study in rat calvaria defects. J. Periodontol. 73(2):191–197 (2002).

    Article  PubMed  CAS  Google Scholar 

  114. C. M. Clokie and Urist M. R. Bone morphogenetic protein excipients, comparative observations on poloxamer. Plast. Reconstr. Surg. 105(2):628–637 (2000).

    Article  PubMed  CAS  Google Scholar 

  115. C. A. Arevalo-Silva, R. D. Eavey, Y. Cao, M. Vacanti, Y. Weng, and C. A. Vacanti. Internal support of tissue-engineered cartilage. Arch. Otolaryngol. Head Neck Surg. 126(12):1448–1452 (2000).

    PubMed  CAS  Google Scholar 

  116. S. D. Hokett, M. F. Cuenin, R. B. O’Neal, W. A. Brennan, S.L. Strong, R. R. Runner, J. C. McPherson, and T. E. Van Dyke. Pluronic polyol effects on human gingival fibroblast attachment and growth. J. Periodontol. 71(5):803–809 (2000).

    Article  PubMed  CAS  Google Scholar 

  117. M. A. Westerink, S. L. Smithson, N. Srivastava, J. Blonder, C. Coeshott, and G. J. Rosenthal. ProJuvant (Pluronic F127/chitosan) enhances the immune response to intranasally administered tetanus toxoid. Vaccine 20(5–6):711–723 (2001).

    Article  PubMed  CAS  Google Scholar 

  118. A. V. Kabanov, P. Lemieux, S. Vinogradov, and V. Alakhov. Pluronic block copolymers, novel functional molecules for gene therapy. Adv. Drug Deliv. Rev. 54(2):223–233 (2002).

    Article  PubMed  CAS  Google Scholar 

  119. C. W. Cho, Y. S. Cho, B. T. Kang, J. S. Hwang, S. N. Park, and D. Y. Yoon. Improvement of gene transfer to cervical cancer cell lines using non-viral agents. Cancer Lett. 162(1):75–85 (2001).

    Article  PubMed  CAS  Google Scholar 

  120. S. M. Moghimi. Re-establishing the long circulatory behaviour of poloxamine-coated particles after repeated intravenous administration, applications in cancer drug delivery and imaging. Biochim. Biophys. Acta 1472(1–2):399–403 (1999).

    PubMed  CAS  Google Scholar 

  121. S. M. Moghimi. Modulation of lymphatic distribution of subcutaneously injected poloxamer 407-coated nanospheres. FEBS Lett. 540(1–3):241–244 (2003).

    Article  PubMed  CAS  Google Scholar 

  122. S. Stolnik, B. Daudali, A. Arien, J. Whetstone, C. R. Heald, M. Garnett, S. S. Davis, and L. Illum. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers Biochim. Biophys. Acta 1514(2):261–279 (2001).

    Article  PubMed  CAS  Google Scholar 

  123. C. J. Porter, S. M. Moghimi, L. Illum, and S. S. Davis. The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett. 305(1):62–66 (1992).

    Article  PubMed  CAS  Google Scholar 

  124. J. Lode, I. Fichtner, J. Kreuter, A. Berndt, J. E. Diederichs, and R. Reszka. Influence of surface-modifying surfactants on the pharmacokinetic behavior of 14C-poly (methylmethacrylate) nanoparticles in experimental tumor models. Pharm. Res. 18(11):1613–1619 (2001).

    Article  PubMed  CAS  Google Scholar 

  125. H. M. Redhead, S. S. Davis, and L. Illum. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908, in vitro characterisation and in vivo evaluation. J. Control. Release 70(3):353–363 (2001).

    Article  PubMed  CAS  Google Scholar 

  126. J. K. Jackson, C. M. Springate, W. L. Hunter, and H. M. Burt. Neutrophil activation by plasma opsonized polymeric microspheres, inhibitory effect of pluronic F127. Biomaterials 21(14):1483–1491 (2000).

    Article  PubMed  CAS  Google Scholar 

  127. P. Lemieux, N. Guerin, G. Paradis, R. Proulx, L. Chistyakova, A. Kabanov, and V. Alakhov. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther. 7(11):986–991 (2000).

    Article  PubMed  CAS  Google Scholar 

  128. S. Danson, D. Ferry, V. Alakhov, J. Margison, D. Kerr, D. Jowle, M. Brampton, G. Halbert, and M. Ranson. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br. J. Cancer 90(11):2085–2091 (2004).

    PubMed  CAS  Google Scholar 

  129. C. Li, W. K. Palmer, and T. P. Johnston. Disposition of poloxamer 407 in rats following a single intraperitoneal injection assessed using a simplified colorimetric assay. J. Pharm. Biomed. Anal. 14(5):659–665 (1996).

    Article  PubMed  CAS  Google Scholar 

  130. T.P. Johnston and W.K. Palmer. Effect of poloxamer 407 on the activity of microsomal 3-hydroxy-3-methylglutaryl CoA reductase in rats. J. Cardiovasc. Pharmacol. 29(5):580–585 (1997).

    Article  PubMed  CAS  Google Scholar 

  131. T. P. Johnston, J. Baker, A. S. Jamal, D. Hall, E. E. Emeson, and W. K. Palmer. Potential downregulation of HMG-CoA reductase after prolonged administration of P-407 in C57BL/6 mice. J. Cardiovasc. Pharmacol. 34(6):831–842 (1999).

    Article  PubMed  CAS  Google Scholar 

  132. T. P. Johnston, J. C. Baker, D. Hall, S. Jamal, W. K. Palmer, and E. E. Emeson. Regression of poloxamer 407-induced atherosclerotic lesions in C57BL/6 mice using atorvastatin. Atherosclerosis 149(2):303–313 (2000).

    Article  PubMed  CAS  Google Scholar 

  133. T. P. Johnston, L. B. Nguyen, W. A. Chu, and S. Shefer. Potency of select statin drugs in a new mouse model of hyperlipidemia and atherosclerosis. Int. J. Pharm. 229(1–2):75–86 (2001).

    Article  PubMed  CAS  Google Scholar 

  134. T. P. Johnston, J. W. Coker, B. J. Paigen, and O. Tawfik. Sex does not seem to influence the formation of aortic lesions in the P-407-induced mouse model of hyperlipidemia and atherosclerosis. J. Cardiovasc. Pharmacol. 39(3):404–411 (2002).

    Article  PubMed  CAS  Google Scholar 

  135. W.K. Palmer, E.E. Emeson, and T.P. Johnston. The poloxamer 407-induced hyperlipidemic atherogenic animal model. Med. Sci. Sports Exerc. 29(11):1416–1421 (1997).

    PubMed  CAS  Google Scholar 

  136. W. K. Palmer, E. E. Emeson, and T. P. Johnston. Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis 136(1):115–123 (1998).

    Article  PubMed  CAS  Google Scholar 

  137. D. R. Brocks and K. M. Wasan. The influence of lipids on stereoselective pharmacokinetics of halofantrine: important implications in food-effect studies involving drugs that bind to lipoproteins. J. Pharm. Sci. 91(8):1817–1826 (2002).

    Article  PubMed  CAS  Google Scholar 

  138. R. J. Ramirez, J. Novak, T. P. Johnston, R. E. Gandley, M. K. McLaughlin, and C. A. Hubel. Endothelial function and myogenic reactivity in small mesenteric arteries of hyperlipidemic pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281(4):R1330–R1337 (2001).

    PubMed  CAS  Google Scholar 

  139. J. M. Blonder, L. Baird, J. C. Fulfs, and G. J. Rosenthal. Dose-dependent hyperlipidemia in rabbits following administration of poloxamer 407 gel. Life Sci. 65(21):PL261–PL266 (1999).

    Article  PubMed  CAS  Google Scholar 

  140. L. A. Eliot, R. T. Foster, and F. Jamali. Effects of hyperlipidemia on the pharmacokinetics of nifedipine in the rat. Pharm. Res. 16(2):309–313 (1999).

    Article  PubMed  CAS  Google Scholar 

  141. L. A. Eliot and F. Jamali. Pharmacokinetics and pharmacodynamics of nifedipine in untreated and atorvastatin-treated hyperlipidemic rats. J. Pharmacol. Exp. Ther. 291(1):188–193 (1999).

    PubMed  CAS  Google Scholar 

  142. T. P. Johnston, H. Beris, and J. L. Kennedy. Effects on splenic, hepatic, hematological, and growth parameters following high-dose poloxamer 407 administration to rats. Int. J. Pharm. 100:279–284 (1993).

    Article  CAS  Google Scholar 

  143. T. P. Johnston and S. C. Miller. Toxicological evaluation of poloxamer vehicles for intra-muscular use. J. Parenter. Sci. Tech. 39:83–88 (1985).

    CAS  Google Scholar 

  144. T. P. Johnston and S. C. Miller. Inulin disposition following intramuscular administration of an inulin/poloxamer gel matrix. J. Parenter. Sci. Technol. 43(6):279–286 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Dumortier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumortier, G., Grossiord, J.L., Agnely, F. et al. A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics. Pharm Res 23, 2709–2728 (2006). https://doi.org/10.1007/s11095-006-9104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9104-4

Key words

Navigation