Skip to main content
Log in

Clonality analysis suggests that STK11 gene mutations are involved in progression of lobular endocervical glandular hyperplasia (LEGH) to minimal deviation adenocarcinoma (MDA)

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Lobular endocervical glandular hyperplasia (LEGH) is a benign proliferative disease of cervical glands. Although histological resemblance of minimal deviation adenocarcinoma (MDA) to LEGH and frequent association of LEGH with MDA have been reported, it still remains unclear whether LEGH is a precancerous lesion of MDA. The present study was undertaken to examine the pathogenetic relationship between LEGH and MDA using a clonality analysis and mutational analyses of the STK11 gene, of which mutations have been reported in MDA. Of nine cases of LEGH only, four were polyclonal and five were monoclonal in composition. Of six LEGH lesions associated with MDA or adenocarcinoma, two were polyclonal and four were monoclonal. In cases of MDA or adenocarcinoma coexisting with LEGH, the patterns of X chromosome inactivation in malignant lesions were identical to those in coexisting LEGH lesions. A mutation of STK11 was only identified in one MDA, but not in LEGH. These results indicate that a subset of LEGH may be a precursor to malignant tumors including MDA and that a mutation of STK11 may be involved in progression of LEGH to MDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gusserow ALS (1870) Ueber Sarcoma des Uterus. Arch Gynakol 1:240–251

    Article  Google Scholar 

  2. Silverberg SG, Hurt WG (1975) Minimal deviation adenocarcinoma (“adenoma malignum”) of the cervix: a reappraisal. Am J Obstet Gynecol 121:971–975

    PubMed  CAS  Google Scholar 

  3. Nucci MR, Clement PB, Young RH (1999) Lobular endocervical glandular hyperplasia, not otherwise specified: a clinicopathologic analysis of thirteen cases of a distinctive pseudoneoplastic lesion and comparison with fourteen cases of adenoma malignum. Am J Surg Pathol 23:886–891

    Article  PubMed  CAS  Google Scholar 

  4. Toki T, Shiozawa T, Hosaka N et al (1997) Minimal deviation adenocarcinoma of the uterine cervix has abnormal expression of sex steroid receptors, CA125, and gastric mucin. Int J Gynecol Pathol 16:111–116

    Article  PubMed  CAS  Google Scholar 

  5. Mikami Y, Hata S, Melamed J et al (2001) Lobular endocervical glandular hyperplasia is a metaplastic process with a pyloric gland phenotype. Histopathology 39:364–372

    Article  PubMed  CAS  Google Scholar 

  6. Mikami Y, Kiyosawa T, Hata S et al (2004) Gastorointestinal immunophenotype in adenocarcinomas of the uterine cervix and related glandular lesions: a possible link between lobular endocervical glandular hyperplasia/pyloric gland metaplasia and ‘adenoma malignum’. Mod Pathol 17:962–972

    Article  PubMed  Google Scholar 

  7. Takatsu A, Miyamoto T, Kurosawa K et al (2011) Preoperative differential diagnosis of minimal deviation adenocarcinoma (MDA) and lobular endocervical glandular hyperplasia (LEGH) of the uterine cervix: a multicenter study of clinicopathology and magnetic resonance imaging (MRI) findings. Int J Gynecol Cancer 21:1287–1296

    PubMed  Google Scholar 

  8. Giardiello FM, Brensinger JD, Tersmette AC et al (2000) A very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology 119:1447–1453

    Article  PubMed  CAS  Google Scholar 

  9. Hemminki A, Tomlinson I, Markie D et al (1997) Localization of a susceptibility locus for Peutz–Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat Genet 1:87–90

    Article  Google Scholar 

  10. Lee JY, Dong SM, Kim HS et al (1998) A distinct region of chromosome 19q13.3 associated with the sporadic form of adenoma malignum of the uterine cervix. Cancer Res 58:1140–1143

    PubMed  CAS  Google Scholar 

  11. Kuragaki C, Enomoto T, Ueno Y et al (2003) Mutations in the STK11 gene characterize minimal deviation adenocarcinoma of the uterine cervix. Lab Invest 83:35–45

    PubMed  CAS  Google Scholar 

  12. Tsuda H, Mikami Y, Kaku T et al (2003) Interobserver variation in the diagnosis of adenoma malignum (minimal deviation adenocarcinoma) of the uterine cervix. Pathol Int 53:440–449

    Article  PubMed  Google Scholar 

  13. Tsuda H, Mikami Y, Kaku T et al (2005) Reproducible and clinically meaningful differential diagnosis is possible between lobular endocervical glandular hyperplasia and ‘adenoma malignum’ based on common histopathological criteria. Pathol Int 55:412–418

    Article  PubMed  Google Scholar 

  14. Gilks CB, Young RH, Aguirre P et al (1989) Adenoma malignum (minimal deviation adenocarcinoma) of the uterine cervix: a clinicopathological and immunohistochemical analysis of 26 cases. Am J Surg Pathol 13:717–729

    Article  PubMed  CAS  Google Scholar 

  15. Tavassoli FA, Devilee P (2003) World Health Organization Classification of tumors. Pathology and genetics of tumors of the breast and female genital organs. IARC press, Lyon

    Google Scholar 

  16. Kusanagi Y, Kojima A, Mikami Y et al (2010) Absence of high-risk human papillomavirus (HPV) detection in endocervical adenocarcinoma with gastric morphology and phenotype. Am J Pathol 177:2169–2175

    Article  PubMed  Google Scholar 

  17. Mutter GL, Chaponot ML, Fletcher AJ (1995) PCR bias in amplification of androgen receptor alleles, a trinucleotide repeat marker used in clonality studies. Nucleic Acids Res 23:1411–1418

    Article  PubMed  CAS  Google Scholar 

  18. Wada H, Enotomo T, Yoshino K et al (2000) Immunohistochemical localization of teromerase hTERT protein and analysis of clonality in multifocal vulver intraepthelial neoplasia. Am J Clin Pathol 114:371–379

    PubMed  CAS  Google Scholar 

  19. Allen RC, Zoghbi HY, Moseley AS et al (1992) Methylation of Hpa2 and Hha1 sites near the polymorphic CAG repeat in the human androgen receptor gene correlates with X chromosome inactivation. Am J Hum Genet 51:1229–1239

    PubMed  CAS  Google Scholar 

  20. Sun H, Enomoto T, Kenneth R et al (2002) Clonal analysis and mutations in the PTEN and the K-ras genes in endometrial hyperplasia. Diag Mol Pathol 11:204–211

    Article  Google Scholar 

  21. Ishii K, Hosaka N, Toki T et al (2001) A new diagnostic method for adenoma malignum and related lesions: latex agglutination test with a new monoclonal antibody. HIK1083. Clin Clim Acta 312:231–233

    Article  CAS  Google Scholar 

  22. Kondo T, Hayashi A, Murata S et al (2005) Endocervical adenocarcinomas associated with lobular endocervical glandular hyperplasia: a report of four cases with histochemical and immunohistochemical analyses. Mod Pathol 18:1199–1210

    Article  PubMed  CAS  Google Scholar 

  23. Nara M, Hashi A, Murata S et al (2007) Lobular endocervical glandular hyperplasia as a presumed precursor of cervical adenocarcinoma independent of human papillomavirus infection. Gynecol Oncol 106:289–298

    Article  PubMed  Google Scholar 

  24. Nishio S, Tsuda H, Fujiyoshi N et al (2009) Clinicopathological significance of cervical adenocarcinoma associated with lobular endocervical glandular hyperplasia. Pathol Res Pract 205:331–337

    Article  PubMed  Google Scholar 

  25. Xu JY, Hashi A, Kondo T et al (2005) Absence of human papillomavirus infection in minimal deviation adenocarcinoma and lobular endocervical glandular hyperplasia. Int J Gynecol Pathol 24:296–302

    Article  PubMed  Google Scholar 

  26. Young RH, Clement PB (2002) Endocervical adenocarcinoma and its variants: their morphology and differential diagnosis. Histopathology 41:185–207

    Article  PubMed  CAS  Google Scholar 

  27. Wada H, Enomoto T, Fujita M et al (1997) Molecular evidence that most but not all carcinosarcomas of uterus are combination tumors. Cancer Res 57:5379–5385

    PubMed  CAS  Google Scholar 

  28. Zhang P, Zhang C, Hao J et al (2006) Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum Pathol 37:1350–1356

    Article  PubMed  CAS  Google Scholar 

  29. Kawauchi S, Kusuda T, Liu X-P et al (2008) Is lobular endocervical glandular hyperplasia a cancerous precursor of minimal deviation adenocarcinoma?: a comparative molecular-genetic and immunohistochemical study. Am J Surg Pathol 32:1807–1815

    Article  PubMed  Google Scholar 

  30. Lizcano JM, Goransson O, Toth R et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843

    Article  PubMed  CAS  Google Scholar 

  31. Shen Z, Wen XF, Lan F et al (2002) The tumor suppressor gene LKB1 is associated with prognosis in human breast carcinoma. Clin Cancer Res 8:2085–2090

    PubMed  CAS  Google Scholar 

  32. Ji H, Ramsey MR, Hayes DN et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448:807–810

    Article  PubMed  CAS  Google Scholar 

  33. Contreras CM, Akbay EA, Gallardo TD et al (2010) LKb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy. Dis Model Mech 3:181–193

    Article  PubMed  CAS  Google Scholar 

  34. Wingo SN, Gallardo TD, Akbay EA et al (2009) Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4:e5137

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-aid for Scientific Research from the Ministry of Education, Science and Culture Japan (No. 22591851) and the Japan Society of Obstetrics and Gynecology.

Declaration of interest

We have no conflict of financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Miyamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takatsu, A., Miyamoto, T., Fuseya, C. et al. Clonality analysis suggests that STK11 gene mutations are involved in progression of lobular endocervical glandular hyperplasia (LEGH) to minimal deviation adenocarcinoma (MDA). Virchows Arch 462, 645–651 (2013). https://doi.org/10.1007/s00428-013-1417-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-013-1417-1

Keywords

Navigation