Skip to main content
Log in

Feasibility of transrectal ultrasonography for assessment of cervical cancer

Anwendbarkeit des transrektalen Ultraschalls zur Erfassung des Zervixkarzinoms

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To retrospectively compare the maximum target width and target thickness in patients with locally advanced cervical cancer between magnetic resonance imaging (MRI) and transrectal ultrasonography (TRUS) in the course of primary radiochemotherapy.

Patients and methods

T2-weighted MRI and TRUS were performed on patients with locally advanced cervical cancer at the same timepoint—either at the time of diagnosis, or at the time of brachytherapy before or after insertion of the applicator. Patients treated from 2009 to 2011 were selected for this study based on the availability of MRI and TRUS at the defined time points. The target was defined as the complete macroscopic tumor mass and the remaining cervix and was measured on transversal planes. Descriptive statistics and a linear regression analysis were performed for the groups.

Results

Images from 17 patients were available for analysis. Mean maximum target width was 4.2 ± 0.83 cm and 4.2 ± 0.79 cm for MRI and TRUS, respectively. Mean maximum target thickness was 3.3 ± 1.03 cm and 3.1 ± 1.15 cm for MRI and TRUS, respectively. Linear regression analysis for target width and thickness between TRUS and MRI demonstrated a correlation with R2 = 0.842 and R2 = 0.943, respectively.

Conclusion

The feasibility of TRUS for the assessment of local target extension could be demonstrated. Comparison of the target width and thickness showed a high correlation between TRUS and MRI, indicating the potential of TRUS for target definition in image-guided adaptive brachytherapy.

Zusammenfassung

Einleitung

Das Ziel der Studie war ein retrospektiver Vergleich der maximalen Durchmesser (Breite, Dicke) des Zielgebiets bei Patientinnen mit lokal fortgeschrittenem Zervixkarzinom zwischen transrektalem Ultraschall (TRUS) und Magnetresonanztomographie (MRT) im Verlauf der primären Radiochemotherapie.

Patieten und Methode

TRUS und T2-gewichtete MRT wurden bei Patientinnen mit lokal fortgeschrittenem Zervixkarzinom entweder zum Zeitpunkt der Diagnose oder zum Zeitpunkt der Brachytherapie (mit bzw. ohne Applikator) durchgeführt. Patientinnen, die im Zeitraum von 2009 bis 2011 behandelt wurden, wurden basierend auf der Verfügbarkeit von TRUS und MRT zu den jeweiligen Zeitpunkten ausgewählt. Als Zielgebiet wurde die komplette Cervix uteri inklusive der makroskopischen Tumormasse definiert. Die Ausmessung der maximalen Durchmesser erfolgte bei transversaler Schnittführung. Eine deskriptive Statistik wurde aufgestellt und eine lineare Regressionsanalyse zum Vergleich zwischen den Gruppen durchgeführt.

Ergebnisse

Für diese Analyse waren die Bilder von 17 Patientinnen verfügbar. Die mittlere maximale Breite des Zielgebiets betrug 4,2 ± 0,83 cm für die MRT und 4,2 ± 0,79 cm für die TRUS. Die mittlere maximale Dicke des Zielgebiets lag bei 3,3 ± 1,03 cm für die MRT und bei 3,1 ± 1,15 cm für die TRUS. In der linearen Regressionsanalyse zwischen TRUS und MRT zeigte sich eine Korrelation mit R2 = 0,842 für die Breite und mit R2 = 0,943 für die Dicke des Zielgebiets.

Schlussfolgerung

Die Anwendbarkeit des TRUS für die Erfassung des Zielgebiets bei Zervixkarzinomen konnte gezeigt werden. Der Vergleich der Breite und Dicke des Zielgebiets ergab eine hohe Korrelation zwischen TRUS und MRT. Diese vielversprechenden Ergebnisse verweisen auf das mögliche Potenzial der TRUS zur Zielgebietsdefinition für die bildgestützte adaptive Brachytherapie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Pötter R, Dimopoulos J, Georg P et al (2007) Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 83:148–155

    Article  PubMed  Google Scholar 

  3. Pötter R, Georg P, Dimopoulos J et al (2011) Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol 100:116–123

    Article  PubMed  Google Scholar 

  4. Van Dyk S, Narayan K, Franzcr et al (2009) Conformal brachytherapy planning for cervical cancer using transabdominal ultrasound. Int J Rad Oncol Biol Phys 75:64–70

    Article  Google Scholar 

  5. Malyapa RS, Mutic S, Low DA et al (2002) Physiologic FDG-PET three-dimensional treatment planning for cervical cancer. Int J Rad Oncol Biol Phys 54:1140–1146

    Article  Google Scholar 

  6. Schmid MP, Mansmann B, Federico M et al (n d) Residual tumour volumes and grey zones after external beam radiotherapy (± chemotherapy) in cervix cancer patients: a low-field MRI study. Submitted to Strahlenther Onkol

  7. Brocker KA, Alt CD, Eichbaum M et al (2011) Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT: part 1. Strahlenther Onkol 187:611–618

    Article  PubMed  Google Scholar 

  8. Alt CD, Brocker KA, Eichbaum M et al (2011) Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT: Part 2. Strahlenther Onkol 187:705–714

    Article  PubMed  Google Scholar 

  9. Dimopoulos JCA, Schirl G, Baldinger A et al (2009) MRI assessment of cervical cancer for adaptive radiotherapy. Strahlenther Onkol 185:282–287

    Article  PubMed  Google Scholar 

  10. Mitchell DG, Snyder B, Coakley F et al (2006) Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography and clinical examination, verfied by pathologic results in the ACRIN 6651/GOG 183 intergroup study. J Clin Oncol 24:5687–5694

    Article  PubMed  Google Scholar 

  11. Dimopoulos JCA, Schard G, Berger D et al (2006) Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, pathoanatomic structures, and organs at risk. Int J Rad Oncol Biol Phys 64:1380–1388

    Article  Google Scholar 

  12. Mahanshetty U, Khanna N, Swamidas J et al (2012) Trans-abdominal ultrasound (US) and magnetic resonance imaging (MRI) correlation for conformal intracavitary brachytherapy in carcinoma of the uterine cervix. Radiother Oncol 102:130–134

    Article  Google Scholar 

  13. Small W Jr, Strauss JB, Hwang CS et al (2011) Should uterine tandem applicators ever be placed without ultrasound guidance? No: a brief report and review of the literature. Int J Gynecol Cancer 21:941–944

    Article  PubMed  Google Scholar 

  14. Davidson MT, Yuean J, D’Souza DP et al (2008) Optimization of high-dose rate cervix brachytherapy applicator placement: the benefits of intraoperative ultrasound guidance. Brachytherapy 7:248–253

    Article  PubMed  Google Scholar 

  15. Haie-Meder C, Pötter R, van Limbergen E et al (2004) Recommendations from the Gynaecological (GYN) GEC ESTRO Working Group: concepts and terms in 3D-image based 3D-treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 74:235–245

    Article  Google Scholar 

  16. Pötter R, Haie-Meder C, van Limbergen E et al (2006) Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose-volume parameters and aspects of 3D-image-based anatomy, radiation physics, radiobiology. Radiother Oncol 78:67–77

    Article  PubMed  Google Scholar 

  17. Haie-Meder C, Chargari C, Rey A et al (2010) MRI-based low dose-rate brachytherapy experience in locally advanced cervical cancer patients initially treated by concomitant chemoradiotherapy. Radiother Oncol 96:161–165

    Article  PubMed  Google Scholar 

  18. Chargari C, Magné N, Dumas I et al (2009) Physics contributions and clinical outcome with 3D-MRI-based pulsed-dose-rate intracavitary brachytherapy in cervical cancer patients. Int J Rad Oncol Biol Phys 74:133–139

    Article  Google Scholar 

  19. Pötter R, Kirisits C, Fidarova EF et al (2008) Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma. Acta Oncol 47(7):1325–1336

    Article  PubMed  Google Scholar 

  20. Schmid AP, Salomonowitz E, Schratter-Sehn AU, Zechner O (1986) New ultrasonically-guided 192-Iridium afterloading technique for radiotherapy of prostatic cancer. Semin Intervent Radiol 4:295–298

    Article  Google Scholar 

  21. Goldner G, Pötter R, Battermann JJ et al (2012) Comparison of seed brachytherapy or external beam radiotherapy (70 Gy or 74 Gy) in 919 low-risk prostate cancer patients. Strahlenther Onkol 103:223–227

    Google Scholar 

  22. Kovacs G, Pötter R, Loch T et al (2005) GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer. Radiother Oncol 74:137–148

    Article  PubMed  Google Scholar 

  23. Ash D, Flynn A, Battermann J et al (2000) ESTRO/EAU/EORTC recommendations on permanent seed implantation for localized prostate cancer. Radiother Oncol 57:315–321

    Article  PubMed  CAS  Google Scholar 

  24. Rosenthal SA, Bittner NH, Beyer DC et al (2011) American society for radiation oncology (ASTRO) and American college of radiology (ACR) practice guideline for the transperineal permanent brachytherapy of prostate cancer. Int J Radiat Oncol Biol Phys 79:335–341

    Article  PubMed  Google Scholar 

  25. Magee BJ, Loque JP, Swindell R et al (1991) Tumor size as a prognostic factor in carcinoma of the cervix: assessment by transrectal ultrasound. Br J Radiol 64:812–815

    Article  PubMed  CAS  Google Scholar 

  26. Innocenti P, Pulli F, Savino L et al (1992) Staging of cervical cancer: reliability of transrectal US. Radiology 185:201–205

    PubMed  CAS  Google Scholar 

  27. Hawenaur JM, Johnson RJ, Carrington BM et al (1998) Predictive value of clinical examination, transrectal ultrasound and magnetic resonance imaging prior to radiotherapy in carcinoma of the cervix. Br J Radiol 71:819–827

    Google Scholar 

  28. Fischerova D, Cibula D, Stenhova H et al (2008) Transrectal ultrasound and magnetic resonance imaging in staging early cervical cancer. Int J Gynecol Cancer 18:766–772

    Article  PubMed  CAS  Google Scholar 

  29. Sharma DN, Rath GK, Thulkar S et al (2010) Use of transrecal ultrasound for high dose rate interstitial brachytherapy for patients of carcinoma of uterine cervix. J Gynecol Oncol 21:12–17

    Article  PubMed  Google Scholar 

  30. Stock RG, Chan K, Terk M et al (1997) A new technique for performing syed-neblett template interstitial implants for gynecologic malignancies using transrectal-ultrasound guidance. Int J Radiat Oncol Biol Phys 37:819–825

    Article  PubMed  CAS  Google Scholar 

  31. Weitmann HD, Knocke TH, Waldhäusl C et al (2006) Ultrasound-guided interstitial brachytherapy in the treatment of advanced vaginal recurrences from cervical and endometrial carcinoma. Strahlenther Onkol 182:86–95

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Austrian Science Fund FWF grant No L562.

Conflict of interest

On behalf of all authors, the corresponding author states the following: The Department of Radiotherapy at the Medical University of Vienna receives/received financial and/or equipment support for research and educational purposes from Nucletron an Elekta company., Varian Medical Systems, Inc., and Isodose Control B.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.P. Schmid MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Pötter, R., Brader, P. et al. Feasibility of transrectal ultrasonography for assessment of cervical cancer. Strahlenther Onkol 189, 123–128 (2013). https://doi.org/10.1007/s00066-012-0258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0258-1

Keywords

Schlüsselwörter

Navigation