RT Journal Article SR Electronic T1 HNRNPA1, a Splicing Regulator, Is an Effective Target Protein for Cervical Cancer Detection: Comparison With Conventional Tumor Markers JF International Journal of Gynecologic Cancer JO Int J Gynecol Cancer FD BMJ Publishing Group Ltd SP 326 OP 331 DO 10.1097/IGC.0000000000000868 VO 27 IS 2 A1 Young-Jon Kim A1 Byoung-Ryun Kim A1 Jae-Suk Ryu A1 Gyeong-Ok Lee A1 Hak-Ryul Kim A1 Keum-Ha Choi A1 Jae-Won Ryu A1 Kyoung-Suk Na A1 Min-Cheol Park A1 Hong-Seob So A1 Ji-Hyun Cho A1 Do-Sim Park YR 2017 UL http://ijgc.bmj.com/content/27/2/326.abstract AB Objective Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), serine/arginine-rich splicing factor 1 (SRSF1), and SRSF3 are splicing regulators associated with oncogenesis. However, the alterations of SF proteins and their diagnostic values in cervical cancer are unclear. To apply SFs clinically, effective marker selection and characterization of the target organ properties are essential.Materials and Methods We concurrently analyzed HNRNPA1, SRSF1, SRSF3, and the conventional tumor markers squamous cell carcinoma antigen (SCCA) and carcinoembryonic antigen (CEA) in cervical tissue samples (n = 127) using semiquantitative immunoblotting. In addition, we compared them with p16 (cyclin-dependent kinase inhibitor 2A [CDKN2A]), which has shown high diagnostic efficacy in immunohistochemical staining studies and has been proposed as a candidate protein for point-of-care screening biochemical tests of cervical neoplasia.Results HNRNPA1, higher molecular weight forms of SRSF1 (SRSF1-HMws), SRSF3, CEA, and p16 levels were higher (P < 0.05) in cervical carcinoma tissue samples than in nontumoral cervical tissue samples. However, the levels of SRSF1-Total (sum of SRSF1-HMws and a lower molecular weight form of SRSF1) and SCCA, a commonly used cervical tumor marker, were not different between carcinoma and nontumoral tissue samples. In paired sample comparisons, HNRNPA1 (94%) showed the highest incidence of up-regulation (carcinoma/nontumor, >1.5) in cervical carcinoma, followed by p16 (84%), SRSF1-HMws (69%), SRSF3 (66%), CEA (66 %), SCCA (32%), and SRSF1-Total (31%). HNRNPA1 (92%) and p16 (91%) presented the two highest diagnostic accuracies for cervical carcinoma, which were superior to those of SRSF3 (75%), SRSF1-HMws (72%), CEA (72%), SCCA (59%), and SRSF1-Total (55%).Conclusions Our results identified that HNRNPA1 is the best diagnostic marker among the SFs and conventional markers given its excellent diagnostic efficacy for cervical carcinoma, and it has a p16-comparable diagnostic value. We suggest that HNRNPA1 is an additional effective target protein for developing cervical cancer detection tools.