TP022/#997 SENTINEL-NODE BIOPSY IN EARLY STAGE OVARIAN CANCER: PRELIMINARY RESULTS OF A PROSPECTIVE MULTICENTRE STUDY (SELLY)

Camilla Nero, *Nicolò Bizzari, Stefano Di Berardino, Francesca Silano, Giuseppe Vizzielli, Francesco Cosenzino, Virginia Vargiu, Pierandrea De Iaco, Myriam Perrone, Enrico Vizza, Stefano Uccella, Fabio Ghezzi, Luigi Carlo Turo, Giacomo Corrado, Diana Giannarelli, Tina Pascuito, Anna Fagotti, Giovanni Scambia.

Department of Gynecology, Shenyang, China

TP020/#1277 TP022/#997

Abstracts

1Camilla Nero, 1Nicolò Bizzari, 1Stefano Di Berardino, 1Francesca Silano, 2Giuseppe Vizzielli, 2Francesco Cosenzino, 1Virginia Vargiu, 1Pierandrea De Iaco, 3Myriam Perrone, 3Enrico Vizza, 3Stefano Uccella, 2Fabio Ghezzi, 1Luigi Carlo Turo, 1Giacomo Corrado, 1Diana Giannarelli, 1Tina Pascuito, 1Anna Fagotti, 1Giovanni Scambia. *1Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Ginecologia Oncologica, Rome, Italy. 2University of Udine, Gynecologic Oncology, Udine, Italy; 3University of Bologna, Obstetrics and Gynecology, Bologna, Italy; 4Istituto Nazionale Tumori Regina Elena-IPO, Ginecologia Oncologica, Roma, Italy; 5AOU-Universita di Verona, Ginecologia Oncologica, Verona, Italy; 6University of Insubria, Gynecologic Oncology Unit, Varese, Italy.

10.1136/ijgc-2023-IGCS.482

Introduction Sentinel-lymph node biopsy has safely replaced lymphadenectomy in the staging of many solid cancers. The aim of this study was to evaluate the sensitivity and specificity of sentinel-lymph-node mapping compared with the gold standard of complete lymphadenectomy in detecting metastatic disease for early stage ovarian cancer.

Methods In the SELLY multicentre, prospective, phase II trial (EUDRACT 2019-001088-38) patients with presumed stage I-II epithelial ovarian cancer and planned for immediate or delayed minimally-invasive comprehensive staging were eligible for study inclusion. Patients received an injection of indocyanine green and sentinel-lymph-node mapping followed by pelvic and para-aortic lymphadenectomy. Seven centers from in Italy participated in the trial. Negative sentinel lymph nodes (by haematoxylin and eosin staining on sections) were ultra-staged with immunohistochemistry for cytokeratin. The primary endpoint, sensitivity of the sentinel-lymph-node-based detection of metastatic disease, was defined as the proportion of patients with node-positive disease with successful sentinel-lymph-node mapping who had metastatic disease correctly identified in the sentinel lymph node.

Current Trial Status Between March 2018 and July 2022, 176 patients were enrolled but only 174 received complete study interventions. 100 (58%) patients had successful mapping of at least one sentinel lymph node and 15 of them (15.0%) had positive nodes. Of the latter, 11 of 15 (73.3%) patients had a correct identification of the disease in the SLN. In detail, 7 out of 11 patients required ultrastaging protocol. 4 patients with node-positive disease had a negative SLN. Enrollment was closed on January 2023. Data analysis is about to be completed.

TP022/#999 STANDARD OF CARE THERAPY WITH OR WITHOUT STEREOTACTIC ABLATIVE RADIATION THERAPY FOR RECURRENT OVARIAN CANCER (SABR-ROC): A PROSPECTIVE RANDOMIZED PHASE III TRIAL (KGOG 3064/KROG 2204)

Chan Woo Wee*, So-In Shin, Jae Hong No, Kyeun Ho Lee, Myoung Cheol Lim, Jae-Weon Kim, Won Kyung Cho, Min Sun Kyung, Jae Yoon Sung, Kyung Jin Min, Eun Ji Lee, Seb Jeon, Jae-Hoon Kim, Yong Seok Kim, Jin-Won Roh, Jong Hoon Lee, Youngmin Choi, Hyun Ju Kim, Yun Hwan Kim, Yong Bae Kim, Yongseok Cancer Center, Department of Radiation Oncology, Seoul, Korea, Republic of; Keimyung University School of Medicine, Department of Obstetrics and Gynecology, Daegu, Korea, Republic of; Seoul National University Bundang Hospital, Department of Obstetrics and Gynecology, Seongnam, Korea, Republic of; Seoul St. Mary’s Hospital, Obstetrics and Gynecology, Seoul, Korea, Republic of; Center for Gynecologic Cancer, National Cancer Center, Department of Obstetrics and Gynecology, Goyang, Korea, Republic of; National University Hospital, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of; Hallym University Dongtan Sacred Heart Hospital, Department of Obstetrics & Gynecology, Hawaseong, Korea, Republic of; Korea University Anam Hospital, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of; Korea University Ansan Hospital, Department of Obstetrics and Gynecology, Ansan, Korea, Republic of; Department of Obstetrics and Gynecology, Chung-ang University Hospital, Seoul, Korea, Republic of; Soonchunhyang University Cheonan Hospital, Department of Obstetrics and Gynecology, Chunan, Korea, Republic of; Gangnam Severance Hospital, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of; Asan Medical Center, Department of Radiation Oncology, Seoul, Korea, Republic of; CHA Ilsan Medical Center, Department of Obstetrics and Gynecology, Goyang, Korea, Republic of; St Vincent’s Hospital, Department of Radiation Oncology, Suwon, Korea, Republic of; Dong-A University School of Medicine, Department of Radiation Oncology, Busan, Korea, Republic of; Gachon University Gil Hospital, Department of Radiation Oncology, Incheon, Korea, Republic of; Ewha Womans University College of Medicine, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of.

1Chan Woo Wee*, 2So-In Shin, 3Jae Hong No, 4Kyeun Ho Lee, 5Myoung Cheol Lim, 5Jae-Weon Kim, 6Won Kyung Cho, 6Min Sun Kyung, 6Jae Yoon Sung, 6Kyung Jin Min, 7Eun Ji Lee, 8Seb Jeon, 9Jae-Hoon Kim, 10Yong Seok Kim, 11Jin-Won Roh, 12Jong Hoon Lee, 13Youngmin Choi, 14Hyun Ju Kim, 15Yun Hwan Kim, 16Yong Bae Kim. *1Yongseok Cancer Center, Department of Radiation Oncology, Seoul, Korea, Republic of; Keimyung University School of Medicine, Department of Obstetrics and Gynecology, Daegu, Korea, Republic of; 2Seoul National University Bundang Hospital, Department of Obstetrics and Gynecology, Seongnam, Korea, Republic of; 3Seoul St. Mary’s Hospital, Obstetrics and Gynecology, Seoul, Korea, Republic of; 4Center for Gynecologic Cancer, National Cancer Center, Department of Obstetrics and Gynecology, Goyang, Korea, Republic of; 5National University Hospital, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of; 6Hallym University Dongtan Sacred Heart Hospital, Department of Obstetrics & Gynecology, Hawaseong, Korea, Republic of; 7Korea University Anam Hospital, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of; 8Korea University Ansan Hospital, Department of Obstetrics and Gynecology, Ansan, Korea, Republic of; 9Department of Obstetrics and Gynecology, Chung-ang University Hospital, Seoul, Korea, Republic of; 10Gangnam Severance Hospital, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of; 11Soonchunhyang University Cheonan Hospital, Department of Obstetrics and Gynecology, Chunan, Korea, Republic of; 12Department of Obstetrics and Gynecology, Chung-ang University Hospital, Seoul, Korea, Republic of; 13Gangnam Severance Hospital, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of; 14Asan Medical Center, Department of Radiation Oncology, Seoul, Korea, Republic of; 15CHA Ilsan Medical Center, Department of Obstetrics and Gynecology, Goyang, Korea, Republic of; 16St Vincent’s Hospital, Department of Radiation Oncology, Suwon, Korea, Republic of; 17Dong-A University School of Medicine, Department of Radiation Oncology, Busan, Korea, Republic of; 18Gachon University Gil Hospital, Department of Radiation Oncology, Incheon, Korea, Republic of; 19Ewha Womans University College of Medicine, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of.

10.1136/ijgc-2023-IGCS.483

Introduction Most patients with ovarian cancer (OC) are diagnosed in advanced stages. A current therapy option for advanced OC patients is debulking surgery; followed by platinum-based chemotherapy ± bevacizumab; followed by maintenance therapy with bevacizumab or monotherapy with PARP inhibitors. The expense of OC maintenance therapy might be substantial. However, the potential benefits of alternating regimens of PARP inhibitors and chemotherapy have not yet been explored. In the alternating regimens of fluzoparib and oral etoposide, both drugs function by directly targeting the DNA of tumour cells. Additionally, the adverse effects of each treatment may be controlled separately without any additive effects. The FARE trial aims to evaluate the efficacy and safety of alternating regimens maintenance therapy in Chinese patients with newly diagnosed advanced OC who are not at high risk of recurrence.

Methods The FARE trial is a single-center, investigator-initiated, single-arm, phase II trial of patients with FIGO stage III-IV high-grade serous or high-grade endometrioid OC. This study includes patients with tumors sample had to be available for central testing to determine BRCA mutation status and homologous-recombination deficiency (HRD) status, no visible residual tumor after primary cytoreductive surgery, and responses to the postoperative platinum-based combination chemotherapy. All enrolled patients are treated with this alternating regimens maintenance therapy for 24 months, until disease progression or unacceptable toxicity, or withdrawal of patient consent. Primary endpoint is progression-free survival (PFS).

Current Trial Status Trial in progress: there are no available results at the time of submission, and there are no available conclusions at the time of submission.

TP023/#61 AN PROSPECTIVE, SINGLE-ARM, PHASE II STUDY OF ALTERNATING REGIMENS OF FLUZOPARIB AND ORAL ETOPOSIDE MAINTENANCE THERAPY, IN NEWLY DIAGNOSED ADVANCED OVARIAN CANCER: FARE TRIAL

Yongpeng Wang*, Rui Tong, Xuemei Li, Weimei Tang, Tingting Yu, Jia Liu, Chunya Wang. Cancer Hospital of ChinaMedical University, Liaoning Cancer Hospital and Institute, Department of Gynecology, Shenyang, China

10.1136/ijgc-2023-IGCS.483

Introduction Most patients with ovarian cancer (OC) are diagnosed in advanced stages. A current therapy option for advanced OC patients is debulking surgery; followed by