node was successfully mapped. 7 (18.9%) patients had positive nodes. In 37 patients, no postoperative complications were detected. The final histology revealed: 31 (83.7%) patients had endometrioid adenocarcinoma, 6 (16.2%) had clear cell carcinoma.

Conclusion/Implications This study confirms the feasibility of the SLN procedure to assess recurrence risk in patients with early EC and the safety of sentinel lymph node detection.

EP166/#912 PREVALENCE OF PARAORTIC LYMPH NODE METASTASIS IN PRESUMED CLINICAL STAGE II ENDOMETRIAL CANCER
Ki Eun Seon*, Yong Jae Lee, Jung-Yun Lee, Eunji Nam, Sunghoon Kim, Young Tae Kim, Sang Wun Kim. Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Obstetrics and Gynecology, Seoul, Korea, Republic of Korea
10.1136/ijgc-2023-IGCS.257

Introduction The aim of this study was to investigate the prevalence of paraaortic lymph node (LN) metastasis in patients with endometrial cancer, whose preoperative clinical stage was assumed to be FIGO stage I.

Methods We retrospectively analyzed the medical records of 462 patients who underwent surgical staging for endometrial cancer at Yonsei Cancer Center from July 2014 to April 2021. The study population consisted of patients with clinical presumed stage I endometrial cancer and who underwent nodal assessment, including both pelvic and paraaortic LNs.

Results A total of 311 patients met the eligibility criteria for the study. They were classified into low/intermediate and high-risk groups based on histology and myometrial invasion. Of the total patients, 66.9% were classified as low/intermediate risk group, while 33.1% were classified as high-risk group. After surgical staging, 28 patients (9.0%) were upstaged, and 12 patients (3.9%) were found to have LN metastasis. The incidence of LN metastasis was higher in the high-risk group (6.8%) than in the low/intermediate risk group (2.9%). However, the pattern of LN metastasis did not differ between the two groups (pelvic and paraaortic LN metastasis: 16.7% vs. 14.3%; pelvic only: 50% vs. 57.1%; paraaortic only: 33.3% vs. 28.6%, in the low/intermediate vs. high-risk group, respectively).

Conclusion/Implications The incidence of paraaortic LN metastasis in endometrial cancer patients presumed to be FIGO stage I by preoperative radiologic evaluation is low. However, our findings emphasize the importance of nodal assessment, particularly in high-risk groups, as a significant number of patients were upstaged and found to have LN metastasis.

EP169/#411 MACHINE LEARNING METHOD FOR DIFFERENTIAL DIAGNOSIS AND PROGNOSIS PREDICTION FOR EARLY-STAGE UTERINE SARCOMA USING PREOPERATIVE BLOOD BIOMARKER AND AGE
1Yuichi Shoburu*, 1Nozomu Yanoihara, 1Junya Tabata, 2Ryo Nishimura, 1Mikako Shimazaki, 1Kazuhiko Oka, 2Yuto Kubonoya, 2Ritsuke Kobayashi-Ogasawara, 2Rie Honda, 2Atsuko Yamada, 2Motoaki Saito, 2Kyosuke Yamada, 1Hirokuni Takano, 2Yusuhisa Terao, 3Eryo Kawakami, 2Atsuko Okamoto, 2The Jikei University School of Medicine, Obstetrics and Gynecology, Tokyo, Japan; 2Yamaguchi University, Faculty of Medicine and Health Sciences, Yamaguchi, Japan; 3Riken, Advanced Data Science Project (adsJ), Riken Information RandD and Strategy Headquarters, Saitama, Japan; 4SunTrust University Faculty of Medicine, Department of Obstetrics and Gynecology, Tokyo, Japan; 1Chiba University Graduate School of Medicine, Department of Artificial Intelligence Medicine, Chiba, Japan
10.1136/ijgc-2023-IGCS.259

Introduction Preoperative differential diagnosis of clinical stage I uterine sarcoma (US) is essential for surgical intervention. Many studies have been done using CT or MRI imaging for machine learning prediction models but not with blood biomarkers. We aimed to develop a new model for diagnosis and prognosis prediction in the US using preoperative blood biomarkers and patient age.

Methods Overall, 143 US patients and 210 benign uterine myoma (UM) patients were randomly assigned to the ‘training and test’ cohort. 78/(55%) cases were on clinical stage I. 30 preoperative peripheral blood parameters and patient’s age was surveyed. The Random Forest (RF) classifier was used to construct an algorithm. The accuracy, the area under the receiver operating characteristic curve (AUC), and the variable