significantly reduced after third recurrence (p=0.558). Patients who received more lines of chemotherapy had better OS (p=0.018). In the multivariate analysis adjusted for clinicopathologic factors, platinum-sensitivity > 12 months and the administration of ≥ three lines of treatment were independent prognostic factors for OS (p<0.0001 and p=0.002, respectively), while ECOG and rechallenge with platinum for PFS (p=0.02 and p=0.0009, respectively). In the multivariate analysis according to single line of therapy, platinum-sensitivity (p=0.013), platinum rechallenge (p=0.016) and maintenance treatment (p=0.005) resulted associated with better PFS at the second recurrence and maintenance therapy preserved its prognostic value up to fourth line (p=0.015).

Conclusion Platinum-sensitivity and receiving ≥ three lines of treatment are independent prognostic factors for OS. Platinum-sensitivity, platinum rechallenge and maintenance therapy are associated with improved PFS in third line; maintenance therapy remains an independent prognostic factor even in subsequent treatments.

Disclosures The authors declare that there are no conflicts of interest.

#676 PROGNOSTIC VALUE OF IMMUNE INFILTRATE IN HIGH-GRADE SEROUS OVARIAN CARCINOMA ACCORDING TO PLATINUM-SENSITIVITY/RESISTANCE STATUS

Introduction/Background Although the prognostic value of immune infiltrate has been extensively explored in HGSC, very few studies explored it according to platinum-sensitivity/resistance status, an important factor for stratifying subsequent therapy.

Methodology Here, we questioned the prognostic value of 5 immune cell subsets (CD3+ and CD8+ T cells, FoxP3+ regulatory T cells, CD68+ and CD163+ tumor-associated macrophages) identified by immunohistochemistry in high-grade serous ovarian carcinoma using a clinically annotated tissue-microarray of 134 tumor samples.

Results We found that high intra-epithelial CD3+ T cell in tumor core was significantly associated with prolonged OS in all patients (HR=0.53; 95% CI [0.30–0.88]; p=0.03), and those who had platinum-sensitive disease (HR=0.51; 95% CI [0.27–0.94]; p=0.03). Similarly, a high density of CD68+ TAMs in tumor core was significantly associated with better OS in all patients (HR=0.49; 95% CI [0.27–0.91]; p=0.02), and those who had platinum-sensitive disease (HR=0.46; 95% CI [0.24–0.89]; p=0.02). Unexpectedly, there was a trend toward better survival in platinum-resistant patients who had stromal accumulation of FoxP3+ Treg (HR=0.27; 95% CI [0.06–1.15]; p=0.08).

Conclusion A deeper spatial and phenotypical characterization of tumor immune microenvironment in HGSC according to platinum-sensitivity/resistance status is warranted for tailoring precision immunotherapy in this deadly disease.

Disclosures Together, our findings suggest that the prognostic value of immune infiltrate in HGSC differs according to platinum-sensitivity/resistance status.