Conclusion Our cost-effective prediction model may help gynecological oncologists to guide clinical personalized treatment plan regarding the need of lymphadenectomy. Further confirmatory studies are still required to validate our findings.

Disclosures We report for the first time that a new scoring method for ER/PR status in preoperative curettage in addition to CA125 level may improve the identification of low- and high-risk EC patients for LNM.

#158 CLINICAL PITFALLS IN SETTING UP A 'ENDOMETRIAL CANCER SENTINEL LYMPH NODE MAPPING' SURGICAL PROTOCOL

Lorenzo Ceppi1, Tommaso Bignardi, Maria Lieta Interdonato, Carmela Quatrale, Manuela Bramieri, Liliana Marchetta, Valeria Matera, Martina Bombelli, Martina Bertoni, Gianluca Donatello, Maria Chiara Palucci, Mario Giuseppe Meroni. Department of Gynecology and Obstetrics, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Medicine and Surgery, Obstetrics and Gynecology, Milano-Bicocca University, Monza, Italy

Introduction/Background Sentinel lymph node (SLN) mapping with indocyanine green (ICG) with Mini-Invasive surgery (MIS) is becoming the standard technique in the treatment of early-stage endometrial cancer (ESEC). The setting up of a standardized surgical and pathology protocol to acquire proficiency is crucial to optimize the SLN detection rate. We sought to describe the first 18 months’ results of such implementation in a large metropolitan hospital in Milan.

Methodology All patients diagnosed with ESEC, treated with MIS as primary surgery, and undergoing ICG injection to detect SLN, between 09/2021–03/2022, were included. Ultrasound staging technique for nodal analysis has been adopted. We assessed variables affecting successful and unsuccessful mapping.

Results Of 46 included patients 80.4% had successful SLN mapping, with 54.3% bilateral and 26.1% monolateral detection. The overall rate of positive SLN was 6.3%, with 2 macro metastasis and 1 isolated tumor cells. Sites of SLN mapping were external iliac (64.4%), obturator fossa (20.3%), common iliac (10.2%). Considering three semesters time-frame, successful mapping progressively increased with (9/12)75.0%, (13/17)76.5%, (15/17)88.2% in the 1st, 2nd and 3rd semester, respectively. SLN empty nodes rates were 16%, 6%, 5% respectively. To gain such proficiency, we progressively adopted a composite standardized protocol including: injection-to-mapping time extension (8.3%, 20.0%, 29.4% respectively), cervical reinjection (0, 1, 1 case respectively), SLN frozen section in not obvious nodal tissue (0, 1, 4 cases respectively). Comparing successful and unsuccessful mapping cases, patients’ and tumor features did not significantly differ between the groups in the three time-frames.

Conclusion Patients and tumor features did not affect the successful migration rate in ESEC SLN mapping in this initial period. On the other hand, a satisfactory rate of successful migration was reached after acquiring an adequate technical skill armamentarium, with a learning curve of about 30 cases.

Disclosures no disclosures reported

#169 COMPLICATIONS AFTER LAPAROSCOPIC SYSTEMATIC LYMPHADENECTOMY VERSUS SENTINEL LYMPH NODE BIOPSY IN EARLY ENDOMETRIAL AND CERVICAL CANCER

Igor Gladchuk*, Valery Zaporozhan, Natalia Rozhkovska, Valeria Marrychereda, Vitaly Kochakov, Yuriy Petrovsky. Odesa National Medical University, Odesa, Ukraine

Introduction/Background Lymph node status is one of the main prognostic factor that play an important role in the postoperative treatment strategy.

The goal of the study was to compare the rate of complications after laparoscopic systematic lymphadenectomy versus sentinel node biopsy in early endometrial and cervical cancer.

Methodology The retrospective study during 2018–2022 years included 96 patients with early endometrial cancer (FIGO stage IB-IIA, G2–3 endometrioid adenocarcinoma) and early cervical cancer (FIGO stage IB-IIA, without parametral invasion). In 89 from 96 patients (92.7%) detected comorbid diseases (hypertension, obesity, diabetes mellitus etc). All patients underwent total laparoscopic hysterectomy (TLH) with pelvic lymph node dissection as a part of surgical staging and divided into two homogenous groups . The first group consisted of 40 patients who underwent systematic pelvic lymphadenectomy (PLE), the second group included 56 patients who underwent indocyanine green (ICG) marked sentinel lymph node (SLN) sampling.

Results Ultrasound scalpel was used for lymphadenectomy in both groups. The lymph nodes involvement were detected in 3 (7,5%) cases in the first group and no metastases were detected in the second group. Operation time in the first group was significantly longer on 35,4 min than in second group (115,8+11,5 min and 80,4+9,2 min, respectively). In the first group there were postoperative complications: obturator nerve damage in 1 patient (2,5%), that was diagnosed and reconstructed intraoperatively, lymphocele - in 2 cases (5%), prolonged lymphedema - in 3 patients (7,5%), urogenital fistula- in 1 patient who received preoperative radiotherapy. No complications were in the second group. In both group there were no bleeding and intraoperative pelvic organ damages.

Conclusion The use of laparoscopic ICG marked SLN sampling for early endometrial and cervical cancer is less traumatic, reduces the rate of intra- and postoperative complications, shortens the time of surgery and can also be proposed for high risk patients.

Disclosures no
Abstract #171 Figure 1 Survival according to different strategies

Introduction/Background To investigate the impact of performing a sentinel lymph node biopsy, a systematic lymphadenectomy, or no lymphadenectomy, in patients with intermediate, intermediate-high- and high-risk endometrial cancer in postoperative diagnosis in early stages.

Methodology Observational, longitudinal, analytical, and retrospective study. A total of 136 patients operated between January 2006 and March 2023, were reviewed. 22 patients with preoperative study of low risk: 6 patients underwent only sentinel lymph node biopsy (SLNB), 5 patients SLNB and pelvic lymphadenectomy (P-LND), and 11 without lymphadenectomy (No-LND). 114 patients with myometrial infiltration >50%, type II or G3 in the preoperative study: 44 patients underwent P-LND and 70 pelvic and paraaortic lymphadenectomy (P-Pa-LND). All patients received the adjuvant treatment decided in the Tumor Committee. Progression-free survival (PFS) and overall survival (OS) were estimated in the four groups.

Results The mean follow-up was 73 months. The mean of removed pelvic lymph nodes was 22 nodes (SD 9.3) and 22.8 (SD 10.3) para-aortic lymph nodes. Pelvic lymph nodes metastasis was observed in 27 cases (24.3%) and 17 cases (24.3%) in para-aortic nodes. In 6 cases para-aortic nodes were positive with negative pelvic lymph nodes (6/50 cases, 12.2%). Considering the P-Pa-LND as standard, no statistically significant differences were found in PFS respected to No-LND (HR: 0.5, 95% CI 0.1–1.7, p = 0.27), SLNB (HR: 0.04, 95% CI 0–49.9, p = 0.37) and P-LND (HR: 0.65, 95% CI 0.3–1.3, p = 0.23); and in OS, respected to No-LND (1.42, 95% CI 0.3–5.3, p = 0.6), SLNB (HR: 0.04, p = 0.5) and P-LND (HR 1.39, 95% CI 0.5–3.2, p = 0.44).

Conclusion It has not been observed that performing different extended lymphadenectomy in intermediate to high-risk endometrial cancer in early stages worsens patient survival.

Disclosures No disclosures

#179 DOES THE COVID-19 VACCINATION INCREASE POSTMENOPAUSAL BLEEDING?
Ester Mirañez Rovira*, Lucía Pastor-Goutherot, Berta Fabrego, Josep-Maria Sole Sedeno, Gemma Manzebo. Hospital del Mar, Barcelona, Spain
10.1136/ijgc-2023-ESGO.284

Introduction/Background The aim of this study was to analyze the incidence of postmenopausal bleeding (PMB) associated to the massive COVID-19 vaccination.

Methodology A retrospective observational cohort study was conducted in a single institution. All postmenopausal women who underwent an endometrial biopsy between February 2021 and January 2022 were included. Patients were classified in two groups: vaccinated or unvaccinated, according to the time between the last COVID-19 vaccine dose and the PMB or the endometrial biopsy in no PMB cases (a 30-day risk window was established).

Results 381 patients were included, 91 in the vaccinated group and 290 in the unvaccinated group. The incidence of PMB in the vaccinated group was 75.8% compared to 59.0% in the unvaccinated group (p = 0.005).

Conclusion In this study, a higher incidence of PMB was associated to COVID-19 vaccine. Therefore, COVID-19 vaccines seem to be safe on this population and clinical and gynecological management should be adjusted when attending these cases.

Disclosures No disclosures

#183 EXPLORING ENDOMETRIAL CANCER CONVERSATIONS ON INSTAGRAM: INSIGHTS FROM A STUDY BY THE EUROPEAN NETWORK OF YOUNG GYNAECOLOGIC ONCOLOGISTS (ENYGO)
1Raffaella Ergasti*, 2Wasim Ahmed, 3, 4, 5Esra Bilir, 6Fabio Martinelli, 7Aleksandra Natalia Strojna, 8Joanna Kacperczyk-Bartnik, 9Sara Nasser, 10Nicolo Bizzarri, 11Martina Aida Angeles, 12Zoia Razumova, 13Charalampos Theofanakis, 13, 14Gilberto Morgan, 15Ane Gerda Eriksson. 1UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Policlinico Agostino Gemelli IRCCS, Rome, Italy; 2Stirling University Management School, Stirling, UK; 3Department of Gynecologic Oncology, Koc University School of Medicine, Istanbul, Turkey; 4Department of Global Health, Koc University Graduate School of Health Sciences, Istanbul, Turkey; 5Department of Obstetrics and Gynaecology, Die Klinik in Preuetz, Preuetz, Germany; 6Department of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; 7Department of Gynecology and Gynecologic Oncology, Evangelische Klinikum Essen Mitte, Essen, Germany; 8UOC Ginecologia Oncologica, Medical University of Warsaw, Warsaw, Poland; 9Department of Obstetrics and Gynecology, Charité Comprehensive Cancer Center, Berlin, Germany; 10Gynecologic Oncology Unit, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain; 11Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden; 12Division of Gynecological Oncology, 1st Department of Obstetrics and Gynecology, Alexander Hospital, National and Kapodistrian University of Athens, Athens, Greece; 13Department of Medical Oncology, Skane University Hospital, Lund, Sweden; 14OncoAlert Network, Lund, Sweden; 15Department of Gynecologic Oncology, Division of Cancer Medicine, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway

10.1136/ijgc-2023-ESGO.285

A138

Int J Gynecol Cancer 2023;33(Suppl 3):A1–A453