Conclusion Roma provides suboptimal discrimination at least among premenopausal patients. If a large independent validation shows similar or slightly lower superiority of the novel ROCK-I over ROMA, it may provide a new basis of routine-use of HE4 in premenopausal patients with pelvic mass.

Disclosures Authors has nothing to disclose

CORRELATION OF AXILLARY ULTRASOUND RESULTS WITH HISTOLOGICAL DATA IN THE EARLY DETECTION OF NODAL INVOLVEMENT IN BREAST CANCER

Yasmine El Gharchi*, Badra Bannour, Imene Bannour, Sassi Boughizane. University Hospital Farhat Hached, Sousse, Tunisia

Introduction/Background Breast cancer is currently the most common malignancy in women worldwide, including Tunisia. Early diagnosis is crucial for improving the prognosis of breast cancer. The combination of mammography and axillary ultrasound has become an integral part of preoperative evaluation. With technological advancements, the axillary lymph node status has emerged as a major prognostic factor. Numerous studies have evaluated the utility of axillary ultrasound (AUS) in the preoperative nodal staging of breast cancer.

Methodology In a prospective study conducted over 6 months, we included 60 patients managed at the Department of Obstetrics and Gynecology of CHU Farhat Hached Sousse, who had early-stage breast cancer (T1-T2, N0) and no clinical evidence of axillary involvement. These patients underwent a combined examination of breast ultrasound and axillary ultrasound. In our study, ACR 4 and ACR 5 lesions accounted for 56.7% and 41.7% of cases, respectively. Additional axillary ultrasound was performed to identify characteristics suggestive of suspicious lymph nodes. Pathological analysis of the radiological findings showed a histological concordance ranging from 70% to 84.6%.

Conclusion Axillary nodal metastasis is a major prognostic factor in breast cancer. Axillary ultrasound (AUS) is currently the most relevant complementary examination for axillary exploration and serves as the gold standard for routine preoperative assessment. In the context of surgical de-escalation, the diagnostic performance of axillary ultrasound in detecting nodal involvement needs to be redefined.

Disclosures Axillary ultrasound plays a crucial role in the preoperative management of breast cancer patients. By identifying patients suspected of having limited nodal involvement, AUS could help avoid unnecessary axillary procedures and align with the current trends of therapeutic de-escalation. In our study, when axillary ultrasound results were normal, it reliably selected patients with limited nodal involvement. However, this result should be interpreted with caution considering the sample size limitation of our study. Following the NCCN guidelines and considering the possibility of false positives in axillary ultrasound, the decision to perform a sentinel node procedure should be discussed. Sentinel node biopsy could be prioritized for patients with at least 3 positive findings in axillary ultrasound to avoid overtreatment of the axilla.

BREAST CANCER IN ELDERLY WOMEN: CLINICOPATHOLOGICAL AND PROGNOSTIC FEATURES

Jbir Ishraf*, Nouha Ben Ammar, Salma Ben Othmen, Houda Bel Felkh, Hassen Tounissi, Salah Azzaiez Institute, Tunis, Tunisia; Mohamed Taher Maamouri Hospital of Nabeul, Tunisia, Nabeul, Tunisia

Introduction/Background Breast cancer (BC) is becoming increasingly prevalent in women greater than 65 years of age. Our objective was to analyze the epidemiological, clinical, therapeutic, and prognostic of (BC) in older women.

Methodology A retrospective study of 45 patients above the age of 65 years diagnosed with breast cancer from January 2014 to December 2019 and treated in Mohamed Taher Maamouri Hospital of Nabeul, Tunisia.

Results Among 356 women who had (BC) during the study period, 54 (15.16%) were aged 65 and over. The average age characteristics suggestive of suspicious lymph nodes. Pathological analysis of the radiological findings showed a histological concordance ranging from 70% to 84.6%.

Conclusion Axillary nodal metastasis is a major prognostic factor in breast cancer. Axillary ultrasound (AUS) is currently the most relevant complementary examination for axillary exploration and serves as the gold standard for routine preoperative assessment. In the context of surgical de-escalation, the diagnostic performance of axillary ultrasound in detecting nodal involvement needs to be redefined.

Disclosures Axillary ultrasound plays a crucial role in the preoperative management of breast cancer patients. By identifying patients suspected of having limited nodal involvement, AUS could help avoid unnecessary axillary procedures and align with the current trends of therapeutic de-escalation. In our study, when axillary ultrasound results were normal, it reliably selected patients with limited nodal involvement. However, this result should be interpreted with caution considering the sample size limitation of our study. Following the NCCN guidelines and considering the possibility of false positives in axillary ultrasound, the decision to perform a sentinel node procedure should be discussed. Sentinel node biopsy could be prioritized for patients with at least 3 positive findings in axillary ultrasound to avoid overtreatment of the axilla.

#714 BREAST CANCER IN ELDERLY WOMEN: CLINICOPATHOLOGICAL AND PROGNOSTIC FEATURES

#675 Table 1

<table>
<thead>
<tr>
<th>Sens. % (95% CI)</th>
<th>Sp. % (95% CI)</th>
<th>Youden-I % (95% CI)</th>
<th>PPV % (95% CI)</th>
<th>NPV % (95% CI)</th>
<th>Acc. % (95% CI)</th>
<th>LR+ % (95% CI)</th>
<th>DOR (95% CI)</th>
<th>ROC-AUC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCK-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ROCK-I-ROCK-index Risk of Ovarian Cancer Risk Index)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROMA</td>
<td>93.6</td>
<td>93.6</td>
<td>90.1-96.1</td>
<td>89.6</td>
<td>93.6</td>
<td>90.1-96.1</td>
<td>89.6</td>
<td>93.6</td>
</tr>
<tr>
<td>(ROA Risk of Ovarian Malignancy Algorithm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK-I</td>
<td>90.0</td>
<td>90.0</td>
<td>89.0-91.0</td>
<td>88.6</td>
<td>90.0</td>
<td>89.0-91.0</td>
<td>88.6</td>
<td>90.0</td>
</tr>
<tr>
<td>(ROCK-I-ROCK-index Risk of Ovarian Cancer Risk Index)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROMA</td>
<td>95.3</td>
<td>95.3</td>
<td>94.4-96.2</td>
<td>94.9</td>
<td>95.3</td>
<td>94.4-96.2</td>
<td>94.9</td>
<td>95.3</td>
</tr>
<tr>
<td>(ROA Risk of Ovarian Malignancy Algorithm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>