lactobacilli representing community state IV. The dominant species isolated in HPV16/18 was different for each sample (n = 4) whereas the dominant species in HPV others were Lactobacillus iners (10/23). The dominant species in low grade histology was Lactobacillus iners (7/20) followed by Gardnerella vaginalis (5/20) while the dominant species in high grade histology were Lactobacillus iners (2/4) and Sneathia sanguinegens (2/4).

Conclusion Lactobacillus iners was noted to be the predominant species in the vaginal microbiome of women with high-risk HPV infection.

Disclosures Nil

#670 DIAGNOSTIC PERFORMANCE OF IOTA SIMPLE RULES, IOTA ADNEX, GIRADS AND ORADS REPORTING SYSTEM IN EVALUATION OF ADNEXAL MASSES

Shagun Kapoor*, Seema Singhal, Neena Malhotra, Ekta Dhamija, Smita Mandhanda, Jyoti Meena, Vatsla Dadhwal, Sandeep Mathur, Vanamai Perumal, Maroof Khan, Neerja Bhatla. All India Institute Of Medical Sciences, New Delhi, India

10.1136/ijgc-2023-ESGO.247

Introduction/Background Ultrasound is the most commonly used imaging modality for pre-operative discrimination of adnexal masses owing to its wider availability and ease of use. USG interpretation is observer dependent and is limited by its subjective nature. To improve performance of USG, several reporting systems have been introduced in clinical practice: IOTA simple rules, ADNEX, GIRADS, ORADS. Several studies have investigated validity of these risk stratification systems. However, data on comparability of systems are limited. The current study was conducted to assess accuracy of risk assessment models IOTA SR, ADNEX, GI-RADS and O-RADS.

Methodology A single-centre prospective observational study was conducted in a tertiary care teaching hospital, and 80 cases were recruited. Pre-operatively USG was done; lesions were classified according to each reporting system and histopathology taken as gold standard. Sensitivity and specificity were determined for each USG reporting system, and performance were compared. Data analyses were carried out using statistical software STATA version 14.0.

Results Of 80 masses 46 (57.5%) were benign whereas 34 (42.5%) were malignant. The sensitivity of IOTA SR was 100% (95% CI 87.7%-100%) and specificity was 84.8% (95% CI 68.9%-94.9%). 19 masses were labelled as inconclusive and SR could not be applied to these, reducing specificity to 60.9% (95% CI 45.4%-74.9%). In ADNEX optimal cut off for risk of malignancy was 46.9% with sensitivity of 88.2% (95% CI 72.5%-96.7%) and specificity of 84.8% (95% CI 71.1%-93.7%). Considering GIRADS 4-5 as predictors of malignancy sensitivity was 100% (95% CI, 89.7%-100%) and specificity was 58.7% (95% CI, 43.2%-73%). The sensitivity of O-RADS using malignancy risk threshold of ≥ 10% (ORADS 4-5) was 100% (95% CI, 89.7%-100%) and specificity was 58.7% (95% CI, 43.2%-73%). The difference in diagnostic accuracy of all tests was not statistically significant (p-value = 0.095).

Conclusion All classification systems were equivalent in accurately identifying risk of malignancy on imaging.

Disclosures GIRADS/ORADS overestimated risk of malignancy.

#675 A NEW SCORE BASED ON HUMAN EPIDIDYMIS PROTEIN 4 DISCRIMINATES BENIGN FROM MALIGNANT ADNEXAL MASS MUCH BETTER THAN RISK OF OVARIAN MALIGNANCY ALGORITHM

1Mikhail Katsyubov*, 2Russel Khansari, 3Hina Kutsenko, 4Maria Egurova, 4Gulyar Muratova, 4Timur Madzhidov, 5Guzel Usmanova, 4Aisylu Akhmetzianova, 2Vera Terentieva. Russian Medical Academy of Continuous Professional Education - Kazan State Medical Academy Branch Campus, Kazan, Russia; 2Republican Clinical Cancer Center named after prof. M.Z.Sigal, Kazan, Russia; 3Siberian State Medical University, Tomsk, Russia; 4Kazan (Volga region) Federal University, Kazan, Russia

10.1136/ijgc-2023-ESGO.248

Introduction/Background Recently, ESGO/ISUOG/IOTA/ESGE Consensus Statement on pre-operative diagnosis of ovarian tumors implied that neither Human epididymis protein 4 (HE4) nor Risk of Ovarian Malignancy Algorithm (ROMA) improve the discrimination between benign and malignant masses compared with CA 125 alone. This statement might be reassessed if a novel algorithm, more effective than ROMA, will be implemented. Thereby the aim of this study was to validate a new predictive algorithm, based on serum CA125&HE4.

Methodology A novel Risk of Ovarian Cancer Kazan Index (ROCK-I), based on serum HE4, CA125 and patient’s age as variables, has been developed using a training dataset (n=284). ROCK-I provides an estimation of the risk of malignancy on imaging. The validating dataset consisted of 333 consecutively operated premenopausal patients with pelvic mass out of which there were 281 cases of benign diseases, 43 cancers and 9 borderline ovarian tumors (BOT). Results on the validating dataset are reported below.

Results When benign diseases vs all cancers and BOT were considered, ROC-AUC of ROCK-I, ROMA and CA 125 in the validating dataset were 0.917, 0.864 and 0.874 respectively. When benign diseases vs all cancers and stages Ic2-III of BOT were considered, ROC-AUC were 0.96, 0.911 and 0.896 respectively. The superiority of ROCK-I was statistically significant over both ROMA (p=0.003) and CA 125 (p=0.002). When standard cut-off levels were applied the specificities of ROCK-I and ROMA were 93.5 and 85.1%, and the sensitivities for all cancers were 93 and 86% respectively. The performance of ROCK-I and ROMA in different scenarios of discrimination is shown in table 1.