EP016/#807

DYNAMIC CHANGES OF PERIPHERAL REGULATORY T CELLS DURING PARP INHIBITOR MAINTENANCE THERAPY IN PATIENTS WITH OVARIAN CANCER

1,2Junsik Park*, 1Mi-Ran Lee, 1JooHyang Lee, 1Yoo-Na Kim, 1Yang Ji Lee, 1Jung-Yun Lee.
1Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of; 2Yonsei University College of Medicine, Severance Biomedical Science Institute, Seoul, Korea, Republic of

Objectives Poly (adenosine diphosphate [ADP]-ribose) polymerase inhibitors (PARPi) are becoming the standard of care for ovarian cancer. However, it has been reported that poly(ADP-ribosyl)ation of FoxP3 negatively regulates suppressive function of regulatory T cells (Treg). Most of the studies on PARPi have focused on the tumor itself and synthetic lethality. The immunological effect, particularly the effect on Treg cells, has been overlooked. In the current study, we investigated the dynamic changes of immune properties of peripheral Treg cells during PARPi maintenance therapy and explored their clinical implications.

Methods We analyzed serial peripheral blood mononuclear cells (PBMCs) from PARPi-treated patients (n=46) with ovarian cancer using multicolor flow cytometry. The PBMCs were collected at the time points included pre-treatment as well as 1, 3, and 6 months after the initiation of treatment. Olaparib or niraparib was used as maintenance therapy.

Results First, the percentages FoxP3+CD4+ regulatory T cells (Treg cells) did not change significantly after initiation, but only the % of resting Treg cells (CD45RA+FoxP3low) increased 3 months after initiation. Second, we analyzed expression of immune checkpoints and properties of Treg cells. We found that the PD-1 and CTLA-4 expression on Treg cells significantly decreased after 3 months and TIGIT and CCR8 decreased after 6 months.

Conclusions Long-term PARPi treatment regulated suppressive function of Treg cells, but since PARPi-induced changes in Treg cells and their clinical implications has not yet been fully elucidated, further research is warranted.

EP017/#425

COMPARISON OF NAPI2B EXPRESSION FROM PAIRED TISSUE SAMPLES IN A CLINICAL STUDY OF UPIFITAMAB RILSODOTIN (UPIR; XMT-1536) SUPPORTS A STRATEGY OF TESTING IN ARCHIVE MATERIAL

1Debra Richardson*, 2Minal Barve, 3Andreas Saltos, 4Kyriacos Papadopoulos, 5John Hays, 6Anthony Tolcher, 7Susan Ellard, 8Deborah Dorsnow, 9Paul Mitchell, 10Corrine Zanavan, 11Theresa Werner, 12Charles Anderson, 13Alex Spira, 14Linda Mileshkin, 15Chelsea Bradshaw, 16Leslie Demars, 17Rebecca Mosher, 18Erika Hamilton.
1Stephenson Cancer Center University of Oklahoma, Gynecologic Oncology, Oklahoma City, USA; 2Texas Oncology, Mary Crowley Cancer Research, Dallas, USA; 3Moffitt Cancer Center, Thoracic Oncology, Tampa, USA; 4START San Antonio, Medical Oncology, San Antonio, USA; 5Ohio State University James Cancer Center, Medical Oncology, Columbus, USA; 6NEXIS Texas Oncology, Medical Oncology, San Antonio, USA; 7University of British Columbia, Bi Cancer Agency, Vancouver, Canada; 8Mount Sinai, Medical Oncology, New York, USA; 9Austin Health – Olivia Newton John Cancer Center, Medical Oncology, Heidelberg, Australia; 10Lahey Hospital, Medical Oncology, Burlington, USA; 11Huntsman Cancer Institute, Medical Oncology, Salt Lake City, USA; 12Williamette Valley Cancer Institute and Research Center, Medical Oncology, Eugene, USA; 13Virginia Cancer Specialists, Medical Oncology, Fairfax, USA; 14Peter MacCallum Cancer Center, Medical Oncology, Melbourne, Australia; 15Mersana Therapeutics, Development Management, Cambridge, USA; 16Mersana Therapeutics, Clinical Development, Cambridge, USA; 17Mersana Therapeutics, Translational Medicine, Cambridge, USA; 18Tennessee Oncology, Sarah Cannon Research Institute, Nashville, USA

10.1136/ijgc-2022-igcs.108

Abstract EP016/#807 Figure 1