analysis evaluated the prevalence of MMRd, MSI-high, and LS in ovarian cancer, as well as the tests performance characteristics.

Methods We systematically searched the MEDLINE, Cochrane Central Register of Controlled Trials, and Embase databases from inception until February 2022. We included studies assessing MMRd using immunohistochemistry (IHC), MSI, and/or germline LS by next-generation sequencing (NGS).

Results A total of 45 studies were included. The incidence for MMRd was 9% (95% CI 6–14%), MSI-high 12% (12–15%), and LS 5% (2–14%) in all epithelial ovarian cancer respectively. Hypermethylation was identified in 77% (95% CI 63–87%) of those with MLH1 deficiency. MMR IHC for LS diagnosis had 92% sensitivity, 77% specificity, 58% positive predictive value, and 98% negative predictive value, whereas MSI performance characteristics were 97%, 91%, 25% and 77% respectively. Synchronous ovarian and endometrial cancers had highest rates of MMRd (26%) and MSI-H (34%). Serous histology had lowest prevalence of 1% for MMRd and 7% for MSI. The highest prevalence of germline pathogenic variants in MMR genes (LS) were found in those with synchronous endometrial-ovarian cancer (53%) as well as clear cell ovarian cancer (25%) with the lowest prevalence in serous ovarian (1%) cancer.

Conclusions MMR deficiency, MSI, and LS are frequent in ovarian cancer, in particular in non-serous histological subtypes.

EP015/#546 IN VITRO AND IN VIVO EFFICACY OF TRASTUZUMAB DERUXTECAN (T-DXd) IN EPITHELIAL OVARIAN CANCER WITH HER2/NEU OVEREXPRESSSION

Levent Mutlu*, Diego Manuella, Stefania Bellone, Alessandro Santin. Yale University, Obstetrics, Gynecology and Reproductive Sciences, New Haven, USA.

10.1136/ijgc-2022-igcs.106

Objectives Epithelial ovarian cancer (EOC) has high recurrence rates, and treatment options are limited. T-DXd is a novel anti-HER2 antibody linked to the topoisomerase 1 inhibitor. This study aimed to determine the in vitro and in vivo efficacy of T-DXd in EOC.

Methods HER2 expression was analyzed with flow cytometry in primary high grade serous (KRCH31 and OVA3) and clear cell (OVA10 and OVA12) EOC cell lines. Cell lines were treated with T-DXd or Control antibody drug conjugate (CTL ADC). The IC_{50}, apoptosis, bystander antitumor assays were performed. KRCH31 cells were injected into the SCID mice and animals were treated with PBS, CTL ADC or T-DXd.

Results KRCH31 and OVA10 EOC cell lines expressed HER2 by flow cytometry, OVA3 and OVA12 had negligible expression. T-DXd mean IC_{50} were 0.014 μg/ml and 0.017 μg/ml for KRCH31 and OVA10 cell lines, but no effect was observed in the OVA3 or OVA12 cell lines. Apoptotic cells increased to 65% and 60% in the KRCH31 and OVA10 cell lines after T-DXd. T-DXd did not show cytotoxicity on AR4-K-GFP cells; however, substantial cytotoxicity was observed due to bystander antitumor activity when cocultured with KRCH31 and OVA10 cell lines (live ARK4-GFP cells 55% and 50%). Day 8 mean tumor volumes were 0.86, 0.81 and 0.43 cm³ in PBS, CTL ADC and T-DXd treated mice, respectively (p=<0.001). Median overall survival was 15, 16.5 days and not reached in PBS, CTL ADC, T-DXd treated mice, respectively (p=0.0002).

Conclusions T-DXd showed in vitro and in vivo preclinical efficacy in HER2 overexpressing EOC. Further clinical trials are warranted.