EP004/#741 DNA METHYLATION LANDSCAPE AS A POTENTIAL PLAYER IN ACQUIRED-DRUG RESISTANCE IN OVARIAN CANCER

1,2,Petronia Silva, 1,Kate Glennon, 1,Michael Metoudi, 1,Bruce Moran, 2,Sofia Salta, 3,Karen Slee, 1,Ann Treacy, 1,Terri Martin, 1,Jacqui Shaw, 1,Peter Doran, 1,Lynda Lynch, 1,2,Carmen Jeronimo, 1,Antoinette Perry, 1,Donal Brennan*. 1,University College Dublin, Cancer Biology and Therapeutics Laboratory, Dublin, Ireland; 2,University College Dublin, Ucd School of Medicine, Dublin, Ireland; 3,University College Dublin, School of Biological and Environmental Science, Dublin, Ireland; 4, Mater Hospital, Gynaecology Oncology, D RWV, Ireland; 5, University College Dublin, Systems Biology Ireland, Dublin, Ireland; 6,Vincent’s University Hospital, Department of Pathology, Dublin, Ireland; 7, Portuguese Oncology Institute of Porto (IPO Porto/Porto Comprehensive Cancer Center (Porto.CCC), Cancer Biology & Epigenetics Group, Porto, Portugal; 8, Trinity College Dublin, School of Biochemistry and Immunology, Dublin, Ireland; 9, Mater Hospital, Department of Pathology, Dublin, Ireland; 10, Mater Misericordiae University Hospital, Clinical Research Centre, Dublin, Ireland; 11, University of Leicester, Leicester Cancer Research Centre, Leicester, UK; 12, Trinity College Dublin, Trinity Biomedical Science Institute, Dublin, Ireland; 13, Institute of Biomedical Sciences Abel Salazar, Department of Pathology and Molecular Immunology, Porto, Portugal; 14, University College Dublin Gynaecological Oncology Group, Ucd School of Medicine, Mater Hospital, Dublin, Ireland.

10.1136/ijgc-2022-igcs.95

Objectives Most ovarian cancer (OC) patients recur after first-line treatment and develop chemoresistance, highlighting an unmet need for precision medicine in OC. Half of OCs harbor mSWI/SNF chromatin-remodeling complex alterations including 10% in the SMARCA4 gene. Studies to date have suggested that the catalytic subunits of the mSWI/SNF complex, SMARCA2 and SMARCA4, exhibit paralog dependency, and thus present an opportunity for synthetically lethal molecular targeting. The aim of this study is to investigate SMARCA2-dependency in SMARCA4-deficient OCs and to identify synthetic lethal interactions of SMARCA2-protein degradation in these cancers.

Methods Using CRISPR-Cas9 lentiviral-transduction targeting the SMARCA4 gene, we developed novel murine syngeneic/isogenic OC cell lines from well-characterized cell lines ID8 and UPK10, and novel electroporation-based genetically engineered mouse model-derived cell line 3_1. Human isogenic...