Abstract EP298/#540 Figure 1 Kaplan-Meier estimates of overall survival

Conclusions Despite differences in patient and treatment characteristics, OS of patients treated in the control arm of OVHI-PEC-I was similar to patients treated outside the trial. This finding does not lend support for the hypothesis that the survival benefit seen in the trial was caused by inferior outcome of patients selected for the trial. These results support the administration of HIPEC in stage III EOC patients undergoing interval CRS in clinical practice.

EP299/#232 GENOMIC INSTABILITY AS A DETERMINANT OF IMMUNE ESCAPE IN OVARIAN CANCER

Ignacio Vazquez-Garcia,1 Florian Uhlich,1 Nicholas Ceglia,1 Jamie Lim,1 Michelle Wu,1 Neeman Mohibullah,1 Juliana Niyazov,2 Arvin Eric Ruiz,2 Robert Soslow,2 Lora Ellenson,2 Nadeem Abu-Rustum,3 Carol Aghajanian,4 Claire Friedman,4 Andrew Mcpherson,4 Britta Weigelt,5 Dmitriy Zamarin,5 Schrab Shah.

1Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, USA; 2Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, USA; 3Memorial Sloan Kettering Cancer Center, Integrated Genomics Operation, New York, USA; 4Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, USA; 5Memorial Sloan Kettering Cancer Center, Integrated Genomics Operation, New York, USA; 6Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, USA

Objectives Genomic instability is a hallmark of human cancer, with fundamental relevance to cancer etiology and evolution. High-grade serous ovarian cancer (HGSOC) is an archetypal cancer of genomic instability defined by distinct mutational processes, intraperitoneal spread and tumor heterogeneity. As immunotherapies have thus far proven ineffective in HGSOC, we sought to establish the determinants of immune evasion in its natural disease history.

Methods We studied the impact of mutational processes and of spatial heterogeneity on cellular phenotypes in the tumor microenvironment (TME), using genome-based stratification of homologous recombination proficient (HRP) and deficient (HRD) disease subtypes, profiling single cell phenotypes from ~1 million cells by single cell RNA sequencing, and site-matched in situ spatial imaging of 160 tumor sites obtained from 42 treatment-naive patients.

Results Mutational processes in HRD-Del (BRCA2- like) tumors were associated with a high neoantigen burden, cell-intrinsic JAK/STAT signaling and CD8+ T cell dysfunction; HRD-Del (BRCA2- like) tumors presented expanded M2-type macrophage populations; and foldback inversion (FBI, HRP) tumors were associated with cell-intrinsic TGFβ signaling, immune exclusion and predominantly naive T cells. HLA loss of heterozygosity was a common mechanism of immune escape in HRD tumors, connecting evolutionary selection with immune states. Multi-region sampling also revealed substantial spatial variation, highlighting the adnexa as an ‘immune-privileged’ site, and suggesting that organ microenvironments can direct immune pruning in patients with widespread disease.

Conclusions Our findings yield mechanistic insights linking mutational processes in HGSOC to intra- and inter-patient variation in immune resistance, which can be leveraged to optimize future immuno-therapeutic strategies.

Int J Gynecol Cancer: first published as 10.1136/ijgc-2022-igcs.390 on 4 December 2022. Downloaded from http://ijgc.bmj.com/ on September 15, 2023 by guest. Protected by copyright.

Int J Gynecol Cancer 2022;32(Suppl 3):A1–A274
patients who initiated MT <9 weeks or ≥9 weeks upon completion of 1LCT.

Results Key baseline characteristics were overall balanced between groups (table 1). Median PFS (95% CI) was 29.4 months (16.9–not estimable) with niraparib versus 8.3 months (5.5–11.0) with placebo (HR =0.31; 95% CI, 0.20–0.48) for the <9 weeks group and was 24.7 months (16.5–not estimable) with niraparib versus 10.8 months (6.5–24.9) with placebo (HR=0.60; 95% CI, 0.41–0.89) for the ≥9 weeks group (figure 1). Grade ≥3 hematological adverse events occurred in similar proportions of niraparib-treated patients for the <9 weeks and ≥9 weeks groups: anemia (19.3% versus 17.0%), platelet count decreased (18.4% versus 10.6%), and neutrophil count decreased (15.8% versus 18.4%).

Conclusions Whether initiated <9 weeks or ≥9–12 weeks upon completion of 1LCT, niraparib MT conferred clinically significant benefit versus placebo to patients with newly diagnosed aOC, without significant impact on safety profile.

Abstract EP300/#854 VOCA L (VIEWS OF OVARIAN CANCER PATIENTS- HOW MAINTENANCE THERAPY AFFECTS THEIR LIVES) STUDY: PATIENT PREFERENCES FOR TREATMENT FORMULATION AND ADMINISTRATION

1Stephanie L Wethington*, 2Soham Shukla, 3Joanna De Courcy, 4Hilary Ellis, 2Jennifer Harlon, 4Amanda Golembesky, 1Teresa Taylor-Whiteley, 5Dana Chase. 1The Kelly Gynecologic Oncology Service, Johns Hopkins Medicine, Department of Gynecology and Obstetrics, Baltimore, USA; 2GlaxoSmithKline, Value Evidence and Outcomes, Collegeville, USA; 3Adelphi Real World, N/a, Macclesfield, UK; 4GlaxoSmithKline, Value Evidence and Outcomes, Research Triangle, USA; 5University of Arizona Cancer Center, Gynecologic Oncology Division, Tucson, USA

Objectives Patient preferences regarding management approach following frontline platinum-based chemotherapy for epithelial ovarian cancer (EOC) remain unstudied. Multiple treatment options are available, including PARP inhibitors, so understanding patient preference is critical.