Abstract EP299/#540 Figure 1 Kaplan-Meier estimates of overall survival

Conclusions Despite differences in patient and treatment characteristics, OS of patients treated in the control arm of OVIPEC-I was similar to patients treated outside the trial. This finding does not lend support for the hypothesis that the survival benefit seen in the trial was caused by inferior outcome of patients selected for the trial. These results support the administration of HIPEC in stage III EOC patients undergoing interval CRS in clinical practice.

EP299/#232 GENOMIC INSTABILITY AS A DETERMINANT OF IMMUNE ESCAPE IN OVARIAN CANCER

1Ignacio Vazquez-Garcia, 2Florian Uhlig, Nicholas Ceglia, 1Jamie Lim, 3Michelle Wu, 4Neeman Mohibullah, 5Juliana Niyazov, 6Avin Ern Ruiz, 7Robert Soslow, 8Lora Ellenor, 9Nadeem Abu-Rustum, 10Carol Aghajanian, 11Claire Friedman, 12Andrew Mcpherson, 13Britta Weigelt, 14Dmitry Zamarin, 15Sohrab Shah.

1Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, USA
2Memorial Sloan Kettering Cancer Center, Integrated Genomics Operation, New York, USA
3Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, USA
4Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, USA
5Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, USA

Genomic instability is a hallmark of human cancer, with fundamental relevance to cancer etiology and evolution, anti-tumor immunity and therapeutic response. High-grade serous ovarian cancer (HGSOC) is an archetypal cancer of genomic instability defined by distinct mutational processes, intraperitoneal spread and tumor heterogeneity. As immunotherapies have thus far proven ineffective in HGSOC, we sought to establish the determinants of immune evasion in its natural disease history.

Methods We studied the impact of mutational processes and of spatial heterogeneity on cellular phenotypes in the tumor microenvironment (TME), using genome-based stratification of homologous recombination proficient (HRP) and deficient (HRD) disease subtypes, profiling single cell phenotypes from ~1 million cells by single cell RNA sequencing, and site-matched in situ spatial imaging of 160 tumor sites obtained from 42 treatment-naïve patients.

Results Mutational processes in HRD-Del (BRCA2^{mut}-like) tumors were associated with a high neoantigen burden, cell-intrinsic JAK/STAT signaling and CD8⁺ T cell dysfunction; and foldback inversion (FBI, HRP) tumors presented expanded M2-type macrophage populations; and foldback inversion (FBI, HRP) tumors were associated with cell-intrinsic TGFβ signaling, immune exclusion and predominantly naïve T cells. HLA loss of heterozygosity was a common mechanism of immune escape in HRD tumors, connecting evolutionary selection with immune states. Multi-region sampling also revealed substantial spatial variation, highlighting the adnexa as an ‘immune-privileged’ site, and suggesting that organ microenvironments can direct immune pruning in patients with widespread disease.

Conclusions Our findings yield mechanistic insights linking mutational processes in HGSOC to intra- and inter-patient variation in immune resistance, which can be leveraged to optimize future immuno-therapeutic strategies.

EP300/#876 IMPACT OF INITIATION TIMING OF NIRAPARIB MAINTENANCE TREATMENT IN NEWLY DIAGNOSED ADVANCED OVARIAN CANCER

1Jing Wang, 2Lingying Wu, 3Jiangjing Zhu, 4Rute Yin, 5Lingya Pan, 6Beihua Kong, 7Hong Zheng, 8Jinhong Liu, 9Xiaohua Wu, 10Li Wang, 11Yi Huang, 12Ke Wang, 13Dongling Zou, 14Hongjin Zhao, 15Chunyan Wang, 16Wenqiao Lu, 17An Lin, 18Xiao Zhai, 19Nan Hua, 20Jianmei Hou.

1Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Department of Gynecologic Oncology, Changsha, China; 2National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Gynecologic Oncology, Beijing, China; 3Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Department of Gynecologic Oncology, Hangzhou, China; 4West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Department of Gynecology and Obstetrics, Chengdu, China; 5Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Obstetrics and Gynecology, Beijing, China; 6Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; 7Sun Yat-sen University Cancer Center, Department of Gynecological Oncology, Guangzhou, China; 8Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; 9Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Department of Gynecological Oncology, Zhengzhou, China; 10Hubei Cancer Hospital (Affiliated Cancer Hospital of Tongji Medical College, Huazhong University of Science and Technology), Department of Gynecological Oncology, Wuhan, China; 11Tianjin Medical University Cancer Institute Hospital, Department of Gynecological Oncology, Tianjin, China; 12Chongqing University Cancer Hospital (Chongqing Cancer Hospital), Department of Gynecological Oncology, Chongqing, China; 13The First Affiliated Hospital of Wenzhou Medical University, Department of Gynecology, Wenzhou, China; 14Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Department of Gynecology, Shenyang, China; 15Women’s Hospital of Medicine School of Zhejiang University, Department of Gynecologic Oncology, Hangzhou, China; 16Cancer Hospital of Fujian Medical University (Fujian Cancer Hospital), Department of Gynecologic Oncology, Fuzhou, China; 17Zai Lab (US) LLC, Nil, Boston, USA; 18Zai Lab (Shanghai) Co., Ltd, Nil, Shanghai, China

10.1136/ijgc-2022-igcs.390

Objectives PARPi maintenance treatment (MT) is indicated for patients with newly diagnosed advanced ovarian cancer (aOC) after first-line platinum-based chemotherapy (1LCT). However, the impact of initiation timing of PARPi MT is unclear. This study aims to compare the efficacy and safety of niraparib MT initiated after different intervals upon completion of 1LCT.

Methods This is a post hoc analysis of the PRIME phase 3 study (NCT07093167). Adults with newly diagnosed aOC and a response to 1LCT were randomized 2:1 to receive niraparib or placebo within 12 weeks upon completing of 1LCT. The primary endpoint was PFS by BICR. Subgroups comprised