Conclusions Although this reflects the correlation between poor performance status and likelihood of treatment, unresectability of disease may reflect geographical variation in timely diagnosis. Further work is needed to determine the impact of these factors on local 5-year survival rates.

EP271/#695 ANTITUMOR IMMUNE RESPONSES INDUCED BY STEM CELL-DERIVED DENDRITIC CELLS IN SYNGENEIC AND ORTHOTOPIC MURINE OVARIAN CANCER MODELS

1Sohyun Nam*, 1Shin-Wha Lee, 2Yang Jae Lee, 1Yang Man Kim. 1Asan Medical Center, University of Ulsan, Department of Obstetrics and Gynecology, Seoul, Korea, Republic of, 2GangNeung Asan Hospital, University of Ulsan College of Medicine, Department of Obstetrics and Gynecology, GangNeung, Korea, Republic of

10.1136/ijgc-2022-igcs.362

Objectives The aim of this study is to evaluate the antitumor immune responses of mouse stem cell-derived dendritic cells (stem-DCs), corresponding to human CD141+ DCs, derived from bone marrow hematopoietic stem cells (BM-HSCs) in syngeneic and orthotopic murine ovarian cancer models.

Methods Stem-DCs from HSCs and mono-DCs from monocytes were obtained from the bone marrow mononuclear cells of C57BL/6 mice, followed by antigen pulsing with ID8 tumor cell lysates. C57BL/6 mice were intraperitoneally injected with 5 × 10⁶ ID8 cells to generate orthotopic models. They were divided into 6 groups for 3-week treatments: vehicle, low/medium/high-dose pulsed stem-DCs, mono-DCs, and unpulsed stem-DCs. At 8 to 9 weeks, antitumor and immune responses were evaluated after sacrificing the treated mice.

Results Stem-DCs and mono-DCs characterized by CD8α^+Clec9a^+ and CD11c^+CD80^+CD86^+ expression, respectively. Despite a lower dose compared with mono-DCs, pulsed stem-DC group showed lower body weight (figure 1) and reduced ascites volume compared with those of vehicle group (P=0.0021 and P=0.0092, respectively). When comparing the representative images and H-E stained images, pulsed stem-DC group appeared to have fewer tumor implants, which were mostly restricted to the epithelium of ovaries, diaphragm and peritoneum. In the pulsed stem-DC group, enhanced immune responses were confirmed by significantly different levels of immunosuppressive and immunostimulatory markers. (figure 2)

Conclusions This study demonstrated that mouse stem-DCs derived from BM-HSCs could inhibit tumor growth and enhance antitumor immune responses against syngeneic and orthotopic ovarian cancer models. Further studies are needed to develop DC-based immunotherapy using human CD141+ DCs in ovarian cancer patients.

EP272/#1143 PARTNER AND LOCALIZER OF BRCA2 (PALB2) PATHOGENIC VARIANTS AND OVARIAN CANCER: A SYSTEMATIC REVIEW AND META-ANALYSIS

1Priyanka Narayan*, 1Muhammed Ahsan, 1Shanice Beaumont, 1Jenny Lin, 1Luiza Perez, 1Leslie Bull, 1Isabel Wolfe, 2Andy Hickner, 1Eloise Chapman-Davis, 3Evelyn Cantillo, 1Kevin Holcomb, 4Ravi Sharaf, 1Melissa Frey. 1Weill Cornell Medicine, Gynecologic Oncology, New York, USA; 2Weill Cornell, Samuel J Wood Library, New York, USA; 3Weill Cornell Medicine, Obstetrics and Gynecology, New York, USA; 4Weill Cornell Medicine, Gastroenterology, New York, USA

10.1136/ijgc-2022-igcs.363

Abstract EP271/#695 Figure 1 Changes in body weight of mice according to DC treatments

Abstract EP271/#695 Figure 2 IHC staining to compare the amount of representative immune cells that were recruited in response to the tumor