between chemo-naïve to chemo-exposed patients (figure 1, cPARG: 23.8% vs. 78.4%, p<0.001). cPARG was associated with a decreased proliferation score (Ki-67 8.0% vs. 19.5%, p=0.03) and decreased overall survival (figure 2). PARG expression could be induced by chemotherapy in chemo-sensitive cells but not in isogenic chemo-resistant cells.

Conclusions PARG localizes to the nucleus in ovarian cancer cells but shifts to the cytoplasm following chemotherapy. Localization of PARG to the cytoplasm is associated with poor survival. The association between PARG expression and resistance to chemotherapy or PARP inhibitors warrants further investigation.

Abstract EP245/#993 NIRAPARIB INDUCES OVARIAN CANCER CELL APOPTOSIS REGARDLESS OF HOMOLOGOUS RECOMBINATION STATUS THROUGH DOWNREGULATION OF THE ONCOGENIC SRC/STAT3 AXIS

1Adrian Kohut*, 2Qianqian Zhao, 2Yi-Jia Li, 2Antons Martincuks, 2Theresa Austria, 2Chunyan Zhang, 1Nicole Lugo, 2Rosemarie Martinez Borrero, 2Mihae Song, 1Lorna Rodriguez-Rodriguez, 2Hua Yu. 1City of Hope National Medical Center, Department of Surgery, Duarte, USA; 2City of Hope National Medical Center — — Duarte, CA, Department of Immuno-oncology, Duarte, USA

10.1136/ijgc-2022-igcs.336

Objectives To elucidate an off-target mechanism by which niraparib induces ovarian cancer cell apoptosis regardless of homologous recombination (HR) status through downregulation of the oncogetic SRC/STAT3 axis.

Methods A variety of techniques were used to determine the underlying mechanisms by which niraparib regulates the SRC/STAT3 axis including tumor organoid formation, cell viability assays, colony formation assays, real-time PCR, western blot, apoptosis assays, cell transfections, in-cell and in-vitro thermal shift assays, and confocal microscopy.

Results Niraparib exhibited more potent antitumor effects than olaparib in both HR deficient and proficient models. In addition to inhibiting PARP catalytic function, niraparib-promoted cell death in ovarian cancer cells was found to be mediated by its inhibitory effects on activated STAT3 (p-STAT3). Niraparib altered the expression of STAT3 downstream target genes, specifically those involved in apoptosis. The anti-apoptotic gene BCL-XL (BCL2L1), usually induced by STAT3 activation, was significantly reduced while the proapoptotic genes CASP3, CASP8, and CASP9, which are suppressed by STAT3 activity, were markedly upregulated. Niraparib-mediated inhibition of the STAT3 pathway was found to be at least partially attributed to the downregulation of SRC kinase activity as demonstrated in all tested ovarian cancer cell lines and patient tumor-derived organoid models.

Conclusions Niraparib inhibits the growth of ovarian cancer cells, regardless of HR status, more effectively than olaparib. Unlike olaparib, which is known to activate STAT3, niraparib inhibits STAT3 activity by interfering with SRC tyrosine kinase. These findings provide a potential off-target mechanism by which niraparib may provide benefit to ovarian cancer patients regardless of HR biomarker status.

Abstract EP246/#636 THE EFFICACY OF MEK INHIBITORS (MEKI) IN THE TREATMENT OF LOW-GRADE SEROUS OVARIAN CANCER (LGSC): A SYSTEMATIC REVIEW

1Anjali Kulkarni*, 1Carly Cooke, 1Michael Fung-Kee-Fung, 2Taynaa Maj, 3Tiffany Zigras. 1The Ottawa Hospital – General Campus, Gynecologic Oncology, Ottawa, Canada; 2Princess Margaret Cancer Centre/University Health Network/Sinai Health Systems, Gynecologic Oncology, Toronto, Canada; 3Trillium Health Partners, Gynecologic Oncology, Mississauga, Canada

10.1136/ijgc-2022-igcs.337

Objectives Low response rates of LGSC to traditional systemic therapies prompts the need for novel therapies. LGSC have a high frequency of mutations in the MAPK cascade, which is targeted by MEKi. The primary objective of this systematic review was to assess the overall response rate (ORR) of LGSC to MEKi.