Conclusion These findings indicate that cytotoxic, genotoxic and apoptotic effects at higher doses of DeflaGyn® may be due to its ROS production capacity. Our results only should be interpreted with caution as we are not suggesting that DeflaGyn® can be utilized in cancer treatment. Before clinical trials on humans, an in vivo experiment such as a tumor-bearing mice model may be studied. These cumulative, cytotoxic, genotoxic, apoptotic effects of Deflagyn may explain the mechanism on precancerous lesions.

Introduction/Background L1 cell adhesion molecule (L1CAM) belongs to the immunoglobulin superfamily of cell adhesion molecules and promotes cell proliferation, invasion, and metastasis. We aimed to study L1CAM expression in early-stage cervical cancer patients and assess its relationship to lymphovascular invasion (LVI), histological type, degree of differentiation, tumor size, and lymph node involvement.

Methodology We study the patients with cervical cancer who underwent surgery in our department (2007 – 2017). An immunohistochemical examination of L1CAM expression was provided. Those in which the presence of L1CAM was confirmed in more than 10% of tumor cells were marked as positive. We enrolled in total 187 patients in stages FIGO I and II. The histological tumor types were adenocarcinoma 20, adenosquamous 14, and squamous carcinoma 153. And grading distribution was 46 tumors in grade 1, 106 in grade 2, and 33 in grade 3. We confirm up to 2 cm in 71 tumors and 116 tumors over 2 cm. LVSI was evident in 67 tumors. Pelvic lymphadenectomy was performed in 169 patients; positive metastasis was in 38.

Results L1CAM expression was positive in 39 (20.9%) tumors. We observed a significant difference in L1CAM expression in adenocarcinoma and adenosquamous carcinoma compared to squamous carcinoma (p=0.001). We noticed a difference in tumor size greater than or equal to 2 cm (p=0.005). L1CAM expression did not affect the degree of differentiation and the presence of LVSI (p=0.521; p=0.115, respectively). We also did not observe a difference in L1CAM expression regarding pelvic lymph node involvement (p=0.949).

Conclusion Our study did not confirm the increased L1CAM expression in cervical cancer as an adverse prognostic factor for LVSI, grade, and pelvic lymph node involvement. However, a significant relationship was seen between L1CAM expression, histological type of tumor, and its size. The study was supported by grant 24/RVO-FNOS/2020.
Introduction/Background Classification of lymph node metastases according to the size into macrometastases > 2 mm (MAC), micrometastases 0.2 – 2 mm (MIC) and isolated tumour cells <0.2 mm (ITC) was adopted from breast cancer. In cervical cancer, MAC is well established as one of the main prognostic factors, while the impact of MIC and ITC has been subject of controversy. Given the fact, that the size of nodal metastasis is a continual variable, we sought to identify a potential cut-off value for the minimal size of metastasis that is not associated with a negative prognostic impact.

Methodology Data of 967 cervical cancer patients, T1a1 L1-T2b stages, after primary surgical treatment with curative intent, including SLN biopsy followed by pathological ultrastaging, were obtained from the SCANN (Surveillance in Cervical CANcer) study. Iterative testing was performed for all subgroups of nodal metastases with upper size cut-offs ranging from 0.01 to 1.0 mm in 0.01 mm intervals. DFS in each subgroup was compared with the N0 cohort and the rest of the N1 group (> cut-off) using Log rank test.

Results When the subgroups were analyzed by the defined cut-off values, we found that disease-free survival was significantly shorter in subgroups with metastases ≥0.4 mm in diameter compared with the N0 subgroup (hazard ratio 2.311, P=.04; see figure 1a). The significance of metastases <0.4 mm could not be assessed due to limited statistical power (<80%). Also, no cut-off could be identified to separate a subcohort of small nodal metastases with significantly better prognosis than the rest of the N1 cohort (see figure 1b).

Conclusion In patients with cervical cancer, the presence of lymph node metastases has a significant negative impact on disease-free survival irrespective of the size of the metastases. Traditional classification of metastases (MAC, MIC and ITC) is of no clinical value.

PROGNOSTIC VALUE OF SYSTEMIC INFLAMMATORY MARKERS IN CERVICAL CANCER
Agne Vitkauskaite, Joana Celestse, Daiva Vaitkienë. Obstetric and Gynaecology department, Lithuanian University of Health Sciences, Kaunas, Lithuania
10.1136/ijgc-2022-ESGO.23

Introduction/Background There is increasing evidence that the host inflammatory response plays crucial role in the development and progression of cervical cancer (CC). It might be that cancer is associated not only with inflammation at the site of the lesion, but also with the overall systemic immune response. The aim of the study was to evaluate prognostic value of systemic inflammatory markers of CC and healthy controls.

Methodology In this prospective study, we examined levels of 7 different cytokines (TNF-α, IFN-β, IFN-γ, IL-1β, IL-6, LPC2 or TREM-1) by using Magnetic bead-based multiplex (Luminex Corporation, United States) assay in sera of 94 squamous cell CC patients treated in Lithuanian University of Health Sciences Hospital Kaunas Clinics Obstetric and Gynecology department and 88 healthy (NILM) women. The blood samples was collected before any treatment or diagnostic procedures.

Results CC patients prognostic value was found of TNF-α > 17.6 pg/ml; IFN-β > 79.01 pg/ml; IFN-γ > 1972.74 pg/ml; IL-1β > 145.3 pg/ml; IL-6 > 17.41 pg/ml; LPC2 > 23721.5 pg/ml and TREM-1 > 355.6 pg/ml. Based on the data set, we can predict a finite multivariate model of binary logistic regression analysis. CC the odds ratio is higher than 3.4, if LPC2 > 23721.5 pg/ml, CC the odds ratio is higher than 6.0, if TREM > 355.6 pg/ml and CC the odds ratio is higher than 11.4, if IL-6 > 14.4 pg/ml.

Abstract 2022-RA-430-ESGO Table 1 Cervical cancer Multivariate Binary Logistic Regression Analysis Model for Inflammatory Marker Value

<table>
<thead>
<tr>
<th>Inflammatory markers</th>
<th>CC group OR (95% Confidence Interval)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prognosis 81.7%., Nagelkerke determination coefficient 0.583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPC2 >23721.5 pg/ml</td>
<td>3.448 [1.455–8.166]</td>
<td>0.005</td>
</tr>
<tr>
<td>TREM >355.6 pg/ml</td>
<td>5.965 [2.257–15.767]</td>
<td>< 0.001</td>
</tr>
<tr>
<td>IL-6 >17.4 pg/ml</td>
<td>11.432 [4.897–26.684]</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Model constanta</td>
<td>-2.85</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Conclusion Monitoring blood levels of LPC2, TREM-1 and IL-6 may be important in predicting cervical cancer especially in risk patients.