Diagnóstico de acierto de la IOTA

Cómo diferenciar entre verdaderos y falsos positivos en la
Diagnóstico de borderline ovarian tumors

Introducción/Background

El objetivo de este estudio fue realizar un diagnóstico de acierto de una evaluación internacional de la Neoplasias en el adnexa (IOTA) – Evaluación de diferentes Néoplasias en el adnexa (ADNEX) modelo para el diagnóstico de borderline ovarian tumors (BOT).

Métodología

Se realizó un estudio retrospectivo de pacientes que sometieron a cirugía ginecológica entre 2012 y 2022 con un diagnóstico de adnexal mass by transvaginal ultrasound. Se incluyó a todas las mujeres mayores de 18 años con diagnóstico histológico de BOT, sin importar su estadio.

Conclusion

El IOTA ADNEX modelo fue utilizado para estimar la probabilidad del benigno o maligno (borderline, estadio I, estadios II-IV, o metástasis) con un umbral del 10%. La histopatología fue el estándar referencial. Se realizaron análisis descriptivos y bivariados. Se calcularon la sensibilidad, especificidad, positividad predictiva (PPV), y negatividad predictiva (NPV), y la razón del likelihood ratio. La razón de la likelihood ratio podría sugerir la necesidad de incorporar variables adicionales en la exploración ultrasonográfica.

Introducción/Background

El objetivo de este estudio fue realizar un diagnóstico de acierto de una evaluación internacional de la Neoplasias en el adnexa (IOTA) – Evaluación de diferentes Néoplasias en el adnexa (ADNEX) modelo para el diagnóstico de borderline ovarian tumors (BOT)

Métodología

Se realizó un estudio retrospectivo de pacientes que sometieron a cirugía ginecológica entre 2012 y 2022 con un diagnóstico de adnexal mass by transvaginal ultrasound. Se incluyó a todas las mujeres mayores de 18 años con diagnóstico histológico de BOT, sin importar su estadio.

Conclusion

El IOTA ADNEX modelo fue utilizado para estimar la probabilidad del benigno o maligno (borderline, estadio I, estadios II-IV, o metástasis) con un umbral del 10%. La histopatología fue el estándar referencial. Se realizaron análisis descriptivos y bivariados. Se calcularon la sensibilidad, especificidad, positividad predictiva (PPV), y negatividad predictiva (NPV), y la razón del likelihood ratio. La razón de la likelihood ratio podría sugerir la necesidad de incorporar variables adicionales en la exploración ultrasonográfica.
of risk of malignancy at ultrasound (US) examination by an experienced sonographer in the field and a pelvic MRI were performed. MRI included morphological, functional sequences and O-RADS MRI score (from 1 to 5: 1, nonadnexal lesion; 2, almost certainly benign; 3, low risk; 4, intermediate risk and 5, high risk). Patients were enrolled to surgery and the US and MRI results were compared to the reference standard (histopathological report).

Abstract 2022-RA-1712-ESGO Table 1

<table>
<thead>
<tr>
<th>Expert US subjective impression</th>
<th>N=34</th>
<th>Histological findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td>15</td>
<td>44.1%</td>
</tr>
<tr>
<td>Inconclusive</td>
<td>18</td>
<td>54.1%</td>
</tr>
<tr>
<td>Benign</td>
<td>17</td>
<td>50.0%</td>
</tr>
<tr>
<td>Inconclusive</td>
<td>17</td>
<td>50.0%</td>
</tr>
<tr>
<td>Borderline</td>
<td>13</td>
<td>38.2%</td>
</tr>
<tr>
<td>Malignant</td>
<td>11</td>
<td>32.4%</td>
</tr>
</tbody>
</table>

Results In 34 patients enrolled, 21 (61.8%) had a benign ovarian mass, 6 (17.6%) borderline ovarian tumour and 7 (20.6%) ovarian cancer. At the US examination by an experienced sonographer 22 (64.7%) ovarian masses remained inconclusive at the US examination, 5 (41.7%) were classified correctly as benign and 5 (41.7%) as malignant. The false positive and negative rates were both 16.7% for the experienced US examination. O-RADS MRI correctly classified as benign (score 2–3) 20 (58.8%) and as malignant (score 4–5) 10 (29.41%) ovarian masses. O RADS MRI showed a false positive rate of 5% and a false negative rate of 23% for the diagnosis of ovarian tumour risk of malignancy. O-RADS MRI showed an accuracy of 88%. Interestingly, in the subgroup of ovarian lesions inconclusive at the US expert examination (n=22), O-RADS MRI showed an overall accuracy of 100%.

Conclusion In this study, the O-RADS MRI score was accurate when stratifying the risk of malignancy in adnexal masses. O-RADS MRI score can be used to further characterise ovarian lesions indetermined by Simple Rules that remained inconclusive at US expert examination.

Endometrial cancer

2022-RA-129-ESGO ULTRASOUND STAGING OF ENDOMETRIAL CANCER
Ahmed Elagwany, Alex uni, Alexandria, Egypt
10.1136/ijgc-2022-ESGO.194

Introduction/Background Endometrial cancer is common in old age and can be divided into type 1 related to estrogen exposure and type 2 not related to estrogen exposure. Staging can be done by MRI along with staging. Ultrasound can be used recently due to advanced technologies in ultrasound.

Methodology Staging of endometrial cancer in a simplified manner is as follows, stage 1 affection of the endometrium with stage 1a as superficial myometrial affection (less than 50% myometrial affection) and 1b as deep myometrial affection (more than 50% affection), stage 2 with cervical affection, stage 3 with pelvic Peritoneum, adnexal, pelvic and paraaortic nodal affection, ascites, positive wash and stage 4 with bladder and rectal affection, inguinal nodes, abdominal metastasis including peritoneal ones.

Results Firstly, We assess the tumor location, size (three diameters), sonomorphology. Secondly, assessment of the Extent of tumor infiltration into the myometrium along with tumor serosa distance especially at the fundus. Thirdly, Cervical stromal involvement is assessed. The extent of tumor stromal invasion whether (≤ 2/3 or > 2/3) or measurement of tumor-free stroma. The last is done by measuring the distance between the tumor and the pericervical fascia which is the paracervix at he level of the cervix and the paracolpos at the level of the vagina. Fourthly, the assessment of the uterine serosa, adnexa and nodal affection. Finally, The spread into the urinary bladder and/or rectum, inguinal nodes and liver, spleen and kidney along with Omentum or abdominal peritoneal lesions (stage 4) can be determined.

Conclusion We present our checklist for ultrasound scanning in cancer cervix.

2022-RA-135-ESGO CYTOREDUCTIVE SURGERY IN RECURRENT ENDOMETRIAL CANCER: A NEW PARADIGM FOR SURGICAL MANAGEMENT?
Joëlle Dhanis, 3Dominic Blake, 3Stuart Rundle, 3Johanna M.A. Pijnenborg, 3Anke Smits.
1Department of Obstetrics and Gynecology, Radboud university medical center, Nijmegen, Netherlands; 2Department of Gynaecological Oncology, Queen Elizabeth Hospital, Gateshead, United Kingdom
10.1136/ijgc-2022-ESGO.195

Introduction/Background To review the literature on the effect of surgical cytoreduction in recurrent endometrial cancer on survival and identify factors associated with improved survival. In addition, we sought to assess the effect of previous radiotherapy on surgical achievement.

Methodology This review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. We performed a search of PubMed and Cochrane Library to identify studies comparing cytoreductive surgery to medical management and studies reporting on patients receiving cytoreductive surgery as part of multi-modal