previous transvaginal ultrasound performed by gynaecologists or radiologists. Patients with a diagnosis of BOT by histopathological findings were included. Descriptive analyses were performed.

Results Of 18 patients diagnosed with BOT, with a mean age of 39 (± 17) years, 11 (73%) were premenopausal, their median CA 125 was 115 (± 32) U/mL. The mean maximum diameter of the lesion was 54 (± 72) mm, 9 (60%) were described as unilocular solids, 5 (33%) as multilocular solids and 1 (7%) as unilocular. In addition to the classic criteria such as vascularization in the papilla found in 15 (83%) of the cases, we found novel characteristics such as: a low level of echogenicity content in 14 (78%) and a pattern of microcystic tissue that resembles a group of small bubbles in 12 (67%) of these tumors. Furthermore, when these three characteristics were positive, the tumors were diagnosed by histopathology as being of serous origin.

Conclusion This study proposes additional characteristics that are of interest for the approach and diagnosis of BOT by ultrasound.

Methodology A retrospective study of patients who underwent transvaginal ultrasound with a diagnosis of adnexal mass and a subsequent surgery between 2012 and 2022 at a tertiary referral university hospital with a gynaecological oncology unit. The IOTA ADNEX model was used to estimate the probability of benignancy or malignancy, with a cut-off of 10% for malignancy. Pathology was the reference standard used. Descriptive statistics and bivariate analysis were performed.

Results For a total of 757 patients, the IOTA ADNEX model identified 171 (22.4%) masses as malignant, of which 64 (37.4%) were confirmed as BOT. 18 (28%) masses were confirmed as TP by histopathology and 46 (72%) as FP. Its usual ultrasound characteristics were similar with the particularity of having a greater number of papillae and blood vessels in papillary projections in the TP. Therefore, additional sonographic features, such as the presence of a low level of echogenicity content and a pattern of microcystic tissue resembling a cluster of tiny bubbles, were evaluated. These characteristics were relevant in most of the TP. Regarding the FP, histopathology showed that 40% were serous cystadenofibrome, 20% ovarian tube abscess, 10% Low-grade serous carcinomas, among others.

Conclusion Our findings show how some usual and novel features in ultrasound are necessary for an adequate differentiation of BOT.

Introduction/Background Currently, the diagnosis of borderline ovarian tumors (BOT) by ultrasound is a challenge. Our study proposes how to differentiate between true positives (TP) and false positives (FP) in the diagnosis of BOT.

Methodology A retrospective study of patients who underwent transvaginal ultrasound with a diagnosis of adnexal mass and a subsequent surgery between 2012 and 2022 at a tertiary referral university hospital with a gynaecological oncology unit. The IOTA ADNEX model was used to estimate the probability of benignancy or malignancy, with a cut-off of 10% for malignancy. Pathology was the reference standard used. Descriptive statistics and bivariate analysis were performed.

Results For a total of 757 patients, the IOTA ADNEX model identified 171 (22.4%) masses as malignant, of which 64 (37.4%) were confirmed as BOT. 18 (28%) masses were confirmed as TP by histopathology and 46 (72%) as FP. Its usual ultrasound characteristics were similar with the particularity of having a greater number of papillae and blood vessels in papillary projections in the TP. Therefore, additional sonographic features, such as the presence of a low level of echogenicity content and a pattern of microcystic tissue resembling a cluster of tiny bubbles, were evaluated. These characteristics were relevant in most of the TP. Regarding the FP, histopathology showed that 40% were serous cystadenofibrome, 20% ovarian tube abscess, 10% Low-grade serous carcinomas, among others.

Conclusion Our findings show how some usual and novel features in ultrasound are necessary for an adequate differentiation of BOT.