PHASE II RANDOMIZED BGOG-CX3 TRIAL COMPARING ATEZOLIZUMAB IN COMBINATION WITH DOXORUBICIN VERSUS DOXORUBICIN ALONE IN SECOND-LINE OR LATER RECURRENT CERVICAL CANCER

1. Introduction/Background
 Single-agent chemotherapies, like doxorubicin, have very modest activity in recurrent cervical cancer (rCC). Recently, anti-programmed-death protein 1 (anti-PD-1) treatment has shown activity in randomized phase III studies in rCC. In the current study we investigated the combination of doxorubicin with an anti-PD-L1 inhibitor atezolizumab (DA), based on the possible synergistic effect, versus doxorubicin (D) alone.

2. Methodology
 Prospective open-label, randomized phase II BGOG-cx3 trial (EudraCT2016-000547-14) randomizing 2:1 (anti-PD-1) treatment has shown activity in randomized phase III studies in rCC. In the current study we investigated the combination of doxorubicin with an anti-PD-L1 inhibitor atezolizumab (DA), based on the possible synergistic effect, versus doxorubicin (D) alone.

3. Results
 Median OS was 10.3 and 7.8 months (p=0.21) for DA and D, respectively. Baseline characteristic similarities in both arms. No new safety signals were noted for the combination of DA.

Conclusion
 Notwithstanding the limited samples size, this study showed a tendency towards a prolonged PFS and OS when doxorubicin was combined with atezolizumab compared with doxorubicin alone in rCC.

Abstract 2022-RA-1265-ESGO Figure 1

Results
 40 patients were randomized between November 2017 and October 2020: 23 vs 17 patients for DA and D, respectively. Baseline characteristics were similar in both arms (total population: squamous cell carcinoma 84%, prior radio-chemotherapy 69%, prior anti-VEGF 61%, median prior lines of chemotherapy in advanced/recurrent setting was 1 with range 0–2). There was a tendency towards a longer median PFS of 4.8 and 3.9 months (figure 1) for DA and D, respectively with HR 0.501 (95%CI 0.246–1.017) (p=0.0558). Similarly, the primary endpoint, PFS rate at 9 months, was numerically higher but failed to reach significance (26% vs 13% for DA and D, respectively (p=0.054)). Median OS was 10.3 and 7.8 months (p=0.21) for DA and D, respectively. DCR at 24 weeks was 16% (DA) vs 0% (D) (p=0.279). Results according to PD-L1 staining will be presented. Discontinuation and dose reductions of D were similar in both groups. No new safety signals were noted for the combination of DA.

Conclusion
 Notwithstanding the limited samples size, this study showed a tendency towards a prolonged PFS and OS when doxorubicin was combined with atezolizumab compared with doxorubicin alone in rCC.

2022-RA-1263-ESGO

Patterns of recurrence and prognostic factors in locally advanced cervical cancer

1. Introduction/Background
 LACC is made up of very different patients treated for decades the same. The prognosis is still not good, especially in those with para-aortic nodal involvement. Its stratification based on the risk of para-aortic nodal involvement is necessary for better management and prognostic improvement. The clinical-pathological patterns and factors associated with recurrences allow us to predict the risk of these as well as adapt our diagnostic therapeutic and follow-up protocols.

2. Methodology
 Retrospective analysis of 196 patients treated with concurrent chemoradiotherapy limited to pelvis (CCRT-P) (n=160) and para-aortic extended field radiotherapy with pelvic chemoradiation (CCRT-P+PAO) (n=36) where the clinical-pathological patterns and factors associated with recurrences were analyzed. In addition, the impact of the local-regional control (LRC) and an added analysis of the patterns and clinical-pathological factors once patients with an inadequate LRC were excluded (n=141).

Results
 Recurrences in CCRT-P+PAO group were lower (p=0.73; 0.10; 0.6, for distant (DR), para-aortic (PAOR) and both (D+PAO-R) respectively. Median to recurrence of 4.6 and 7 months for local-regional recurrences (LRR), DR and PAOR in the CCRT-P, and 10 months for total recurrences in the CCRT-P+PAO group. OS in the CCRT-P group was higher (p=0.14). In the CCRT-P group, the presence of >1 pelvic node and the absence of LRC were independent prognostic factors for DR and D+PAO-R (HR 2.42, IC 95% [1.017; HR 0.501 (0.246–1.017)] p=0.033) and for all types of recurrences respectively (HR 21.2, IC 95% [9.9–47]; HR 8.14, IC 95% [3.1–21]; HR 21.2, IC 95% [10.1–44] for DR, PAOR and D+PAO-R, with p<0.000 in all types). OS was lower in patients with CCRT-P with >1 pelvic node (p<0.000) and inadequate LRC (p=0.023). Recurrences and median to recurrence in CCRT-P and adequate LRC group (n=141) was 16.3%, and
29 and 30 months for RAD and RPAO. After multivariate analysis, in the CCRT-P and adequate LRC group, a tumor size of ≥4 cm was associated as an independent prognostic factor for DR (HR 2.7, IC 95% [1.04–7], p=0.032). OS was lower in patients with a tumor of ≥4 cm in this group (p=0.12).

Conclusion There are different patterns of recurrence in LACC between those treated with CCRT-P and CCRT-P + PAO, that allows us to provide for the risk of these and adapt our diagnostic-therapeutic and follow-up protocols. LACC patients treated with CCRT-P have clinical-pathological factors associated with recurrences that allow us to provide for the risk of these as well as adapt our diagnostic-theapeutic and follow-up protocols.

COELIO-SCHAUTA: LAPAROSCOPICALLY ASSISTED RADICAL VAGINAL HYSTERECTOMY IN EARLY-STAGE CERVICAL CANCER

1Ariel Glickman, 2Berta Diaz-Feijoo, 3Pere Fusté, 4Eduardo Gonzalez Bosquet, 5Núria Carreras Dieguez, 6Núria Agusti, 7Tiemers Marina, 8Isabel Matas, 9Cristina Celada, 10Marta del Pino, 11Jaume Pahisa, 12Aureli Torné. 1Hospital Clinic Barcelona, Barcelona, Spain; 2Hospital Clinic Barcelona, Barcelona, Spain

Introduction/Background Since the publication of the LACC trial results, the role of minimally invasive radical hysterectomy for cervical cancer has been questioned. However, it is likely that the lower survival rates shown in the minimally invasive surgery (MIS) arm, were not directly related to the MIS itself, but rather to technical procedures linked to laparoscopic and robotic-assisted approaches, such as the use of uterine manipulators or the opening of the vagina through the abdominal cavity.

Methodology Laparoscopically assisted radical vaginal hysterectomy (LARVH) or Coelio-Schauta combines lymph node staging and pelvic space creation by laparoscopy with radical hysterectomy including parametrium-paracolpium resection performed predominantly by vaginal approach, as reported by Schauta. This technique has shown oncological results and surgical complications comparable with those reported for the open surgery arm of the LACC trial. During LARVH, colpotomy and closure of the vagina are performed at the beginning of the radical hysterectomy, precluding manipulation of the tumor during the procedure.

Results We present a step-by-step video demonstration of the LARVH technique as it has been performed for more than 25 years at Hospital Clinic of Barcelona following surgical technique described by Dargent and Querleu.

Conclusion Coelio-Schauta is a minimally invasive technique that adheres to the oncologic principle of tumor containment. It should be included in prospective randomized trials to clarify the role of MIS in early-stage cervical cancer.

THE IMPACT OF HOSPITAL SURGICAL VOLUME ON SURVIVAL IN EARLY-STAGE CERVICAL CANCER TREATED WITH RADICAL HYSTERECTOMY: A SUB-ANALYSIS OF THE SCCAN STUDY

1Nicolò Bizzini, 2Lukáš Dostálek, 3Łuc RWL Lorkhujian, 4Diana Giannarelli, 5Alejo Lopez, 6Henrik Falcroner, 7Denis Querleu, 8Ali Ayhan, 9Sarah H Kim, 10David Isla Ortiz, 11Yaroslav Klat, 12Andreas Obermair, 13Fabio Landoni, 14Iulianna Rodriguez, 15Ranjit Manchanda, 16Ian Kostin, 17Pedro T Ramirez, 18Mehmet M Meydanli, 19Diego Odetto, 20Rene Lacky, 21Ignacio Zapardiel, 22Vit Weinberger, 23Ricardo Dos Reis, 24Luigi Pedone Anchora, 25Karina Amaro, 26Sahar Salehi, 27Huseyin Akilli, 28Nadeem R Abu-Rustum, 29Rosa A Salcedo-Hernández, 30Veronica Javirkova, 31Constantine H Mom, 32Giovanni Scambia, 33David Cibula. 1UOC Ginecologia Oncologica, Dipartimento per la Salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; 2Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital (Central and Eastern European Gynecologic Oncology Group, GECOG), Prague, Czech Republic; 3Center for Gynecologic Oncology Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands; 4Biostatistics Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; 5Department of Gynecological Surgery, National Institute of Neoplastic Diseases, Lima, Peru; 6Department of Pelvic Cancer, Karolinska University Hospital and Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden; 7Baskent University School of Medicine, Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Ankara, Turkey; 8Memorial Sloan Kettering Cancer Center, New York, NY; 9Gynecology Oncology Center, National Institute of Cancerology Mexico, Mexico City, Mexico; 10Department of Obstetrics and Gynecology, Faculty of Medicine, University Hospital and University of Ostrava, Ostrava, Czech Republic; 11Queensland Centre for Gynaecological Cancer, The University of Queensland, Brisbane, Australia; 12University of Milano-Bicocca, Department of Obstetrics and Gynecology, Gynecological Oncological Surgical Unit, ASST-Monza, San Gerardo Hospital, Monza, Italy; 13Department of Gynecologic Oncology, Instituto Nacional de Cancerologia, Bogota, Colombia; 14Wolfson Institute of Preventive Medicine, Barts Cancer Centre, Queen Mary University of London, and Barts Health NHS Trust, London, UK; 15Department of Gynecology and Obstetrics, University Hospital Pilsen, Charles University, Prague, Czech Republic; 16Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX; 17Department of Gynecologic Oncology, Zekai Tahir Burak Women’s Health and Research Hospital, University of Health Sciences, Ankara, Turkey; 18Department of Gynecologic Oncology, Hospital Italiano de Buenos Aires, Instituto Universitario Hospital Italiano, Buenos Aires, Argentina; 19Gynecology, Medical University of Graz, Graz, Austria; 20Gynecologic Oncology Unit, La Paz University Hospital – IdiPAZ, Madrid, Spain; 21University Hospital Brno, Medical Faculty of Masaryk University, Brno, Czech Republic; 22Department of Gynecologic Oncology, Hospital de Amor, Barretos, Sao Paulo, Brazil

Introduction/Background The objective was to evaluate the impact of number of radical hysterectomies (RHs) performed per year in each center on disease-free survival (DFS) and overall survival (OS), from patients previously included in the SCCAN study.

Methodology International, multicenter, retrospective study. Patients with FIGO-2009-stage IB1-IIA1 cervical cancer who underwent RH, did not undergo neo-adjuvant chemotherapy and with pathologic negative lymph nodes, were included. Patients were treated in national referral centers for gynecologic oncology according to updated national/international guidelines. Optimal cut-offs for surgical volume were identified using an unadjusted Cox proportional hazard model with DFS as outcome and defined as the