during hospitalisation, only one serious complication in post-ERAS cohort occurred after hospitalisation. Readmissions decreased from 11.8% to 4.8% (p=0.173). Survival analysis was conducted on stages I-II squamous-cell carcinoma; no significant difference was found between pre-post implementation on overall survival (p=0.277) and disease-free survival (p=0.671).

Conclusion Although CHUM’s practices correspond to 78.9% of the ERAS vulvar surgery guidelines, our compliance remains below 60% and did not significantly increase after ERAS implementation. This might be due to a lack of documentation in patients’ record. The main impact of ERAS implementation was the LOS significant decrease.

Introduction/Background Prehabilitation programmes aim to optimise the period between cancer diagnosis and treatment, by enhancing an individual’s functional and mental capacity prior to surgery. The aim of this study was to review the literature evaluating the effect of prehabilitation programmes on postoperative outcomes and quality of life of patients with gynaecological cancer undergoing surgery.

Methodology This was a systematic review, performed according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Databases including Pubmed, Medline, EMBASE (Ovid) and PsycINFO were systematically searched to identify studies evaluating the effect of prehabilitation programmes on patients with gynaecological cancer. Both unimodal and multimodal prehabilitation programmes were included encompassing physical exercise, nutritional and psychological support. Primary outcomes were operative complications and quality of life. Secondary outcomes were anthropometrics and adherence to the programme.

Results Seven studies fulfilled the inclusion criteria, comprising 580 patients. Included studies comprised non-randomised prospective studies (n=4), retrospective studies (n=2) and one case report. Unimodal programmes and multimodal programmes were included. In patients with ovarian cancer, multimodal prehabilitation resulted in significantly reduced hospital stay and time to chemotherapy. In patients with endometrial and cervical cancer, prehabilitation was associated with significant weight loss, but no significant effects on operative complications or mortality. No adverse events of the programmes were reported.

Conclusion Evidence on the effect of prehabilitation for patients with gynaecological cancer is limited. Future studies are needed to determine the effects on postoperative complications and quality of life.

Introduction/Background Nausea and vomiting are one of the most common and challenging side effects related to chemotherapy. The aim of the study was to develop a predictive score for chemotherapy-induced nausea and vomiting (CINV) in patients with gynaecological cancers planned for chemotherapy by identifying non-pharmacological, patient-related risk factors.

Methodology A research-based questionnaire of 27 risk factors was designed and handed out to chemotherapy-naïve patients with gynaecological malignancies. Data on nausea and vomiting from at least 3 cycles of therapy was collected. Variable selection via stepwise and LASSO regression combined with patients’ history was used to determine few questions with high predictive power. Bayesian logistic regression (risk prediction model) was implemented with a cut-off chosen to reach a sensitivity of 80%. Area under the curve analysis (AUC) was performed and the accuracy of prediction calculated.

Results 191 patients were enrolled, of which 174 (91.1%) received at least one dose of chemotherapy (intention-to-treat population). Most patients suffered from ovarian cancer (68.0%), and received the carboplatinum/paclitaxel chemotherapy combination (57.5%). Leading predictive factors for CINV were educational status, nausea and vomiting due to other medication, motion sickness, anxiety from therapy in general, anxiety from nausea due to therapy, emetogenic potential of therapy and distress level. 142 (81.6%) patients answered all questions concerning these factors. Among those, 107 (66.0%) were affected by nausea or vomiting. The AUC of the predictive score based on the above mentioned factors was 0.727 (95% CI [0.636; 0.818]), with a sensitivity of 80.4% [72.9%, 87.9%], a specificity of 48.6% [31.4%, 65.7%] and an overall accuracy of 72.5% [65.5%, 79.6%].

Conclusion To this day, a patient-related predictive model for the occurrence of CINV is missing, making the choice of the right antiemetic prophylaxis difficult. The score featured in our study showed very promising predictive power and is currently being validated.