prognosis, however markers that further risk-stratify intermediate groups are needed. Serum cancer antigen-125 (CA125) and human epididymis-4 (HE4) show promise as prognostic markers. The aim of this study was to evaluate the association between serum CA125, HE4 and endometrial cancer survival outcomes when stratified by molecular subgroup.

Methodology Pre-treatment serum CA125 and HE4 levels were measured and endometrial tumours classified according to WHO molecular classification. The relationship between biomarkers and survival was evaluated using Kaplan-Meier analysis and multivariable cox regression.

Results Overall, 327 women were included, with POLE status available for 216. Tumours were POLE-mutant (5%), p53-deficient (11%), MMR-deficient (30%) and NSMP (54%). Median follow up was 50 months (IQR 30–60), during which 42 (13%) recurred and 71 (21%) women died. CA125≥35U/mL was independently associated with overall mortality [aHR=2.42 (95%CI:1.45–4.06), p=0.001], cancer specific death [aHR=2.00 (95%CI:1.04–3.87), p=0.04] and recurrence [aHR=2.69 (95%CI:1.38–5.27), p=0.004]. When stratified by molecular subgroup, CA125≥35U/mL and HE4≥150pmol/L were prognostic of overall survival in MMR-deficient [CA125: aHR=4.92 (95%CI:1.74–13.89), p=0.003 and HE4: aHR=4.03 (95%CI:1.34–12.11), p=0.01] and NSMP subgroups [CA125: aHR=3.72 (95%CI:1.30–10.67), p=0.01].

Conclusion CA125 and HE4 may risk-stratify those at intermediate risk of recurrence and death. Evaluation in a larger population is required.

Conclusion These results confirm the reports from previous, smaller studies and show that AI-models could be useful in differentiating biofluid samples, such as urine, between patients and healthy controls. Further research is needed in order to confirm the validity of the method and to assess its potential on clinical applications.

Introduction/Background In early cervical cancer (ECC) patients with nodal metastasis (N+) present worse survival. However, 10–15% of patients without nodal metastasis (N0) present the same survival to N+ patients. As in cervical cancer, HPV DNA could be assimilated to tumoral DNA, we evaluate the presence of HPV DNA in pelvic Sentinel lymph nodes (SLN) by new ultrasensitive droplet-based digital polymerase chain reaction (ddPCR) as a biomarker of survival.

Methodology Inclusion criteria: ECC patients who underwent pelvic SLN detection N0 in pelvic lymph nodes. Associated pelvic lymph nodes samples were available for 60 patients with HPV16, HPV18 or HPV33 positive tumours. In SLN, after DNA extraction, HPV16 E6, HPV18 E7 and HPV33 E6 gene were respectively targeted and detected by ultrasensitive ddPCR optimized on two different platforms, the RainDrop Digital PCR System (RainDance Technologies, Bio-Rad, Hercules, CA) or the Biorad system. We compare two groups according to HPV DNA in pelvic Sentinel lymph nodes (SLN) on clinical applications.
MULTIPLEXED BIOMARKER DETECTION USING THE QUANTIGENE ASSAY IN WOMEN LIVING WITH HIV FOR CERVICAL DYSPLASIA DETECTION

Abstract 2022-RA-1480-ESGO Figure 1

Conclusion Our results show worst OS in patients with detected HPV DNA compared to patients without detected HPV DNA in their SLN and the same tendency is observed for PFS without significance. Thus, HPV DNA in SLN detected by ultrasensitive ddPCR could represent an interesting prognosis biomarker in N0 ECC.

A COMBINATION OF MOLECULAR AND CLINICAL PARAMETERS PROVIDES A NEW STRATEGY FOR HIGH-GRADE SEROUS OVARIAN CANCER PATIENT MANAGEMENT

1Anna Sophie Skof, 2Wilbert Mbuya, 3Ruby Mcharo, 4Iset Torres, 5John France, 6Arne Kroidl, 7Christof Geldmacher, 8Andreas M Kaufmann. Department of Gynaecology, Charité – Universitätsmedizin Berlin – corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; 9Mbeya Medical Research Center (MMRC), Mbeya, Tanzania, United Republic of; 10Mbeya Referral Hospital (MRH), Mbeya, Tanzania, United Republic of; 11Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany

Introduction/Background Cervical cancer (CxCa) and its precursor lesions are caused by persistent infection with a high-risk (HR) Human Papillomavirus (HPV). Women living with HIV (WLWH) have a higher risk for cervical dysplasia and CxCa development. The high HPV prevalence in WLWH makes a HPV-PCR based screening non-efficient. Biomarker detection could be a possibility, to find woman at risk. We evaluated the biomarker-based QuantiGene-Molecular-Profiling-Histology assay (QG-MPH) in WLWH.

Methodology We analysed a representative subset of samples (n=301) from the prospective 2H-study including HIV+ and HIV- women. A cervical sample was collected using a cytobrush and fixed into ThinPrep/PreservCyt. The QG-MPH assay is based on the multiplexed Luminex bead-based technology platform (QuantiGene 2.0). It detects and quantifies the mRNA of 18 HR-HPV genotype-specific oncogenes, reference genes and cellular biomarkers including proliferation, tumour stem cell and tumour markers to predict the dysplasia stage, simultaneously.

Results HIV coinfection was significantly associated with increased mRNA expression of the following biomarkers in HR-HPV+ women without cervical lesions: leading HPV-E7 (p=0.0019), p16 (p=0.022), STMN1 (p=0.0039), MCM2 (p=0.015), KRT7 (p=0.0035) and KRT17 (p=0.014). In cervical cancer cases (HIV+ =19, HIV-=18) only the expression of Nanog mRNA was different (p=0.022). Using the risk score developed on a HIV- cohort led to false positive detection (CIN3+) of 68.8% (n=22) in WLWH without lesions. Logistic regression analyses showed best markers for CxCa detection in HIV+ patients in our cohort were BIRC5, KRT17, MMP7 and p53 with a combined AUC of 0.93 (sensitivity=95%, specificity=82.0%).

Conclusion Viral oncogene expression is increased in HR-HPV + WLWH without cervical lesions. Biomarker evaluation has the potential to overcome problems of HPV PCR-based screening in WLWH. However, risk score adaptation is needed as biomarker expression varies between HIV+ and HIV-patients. Further studies with higher sample number are warranted to confirm the best markers and risk scores by QG-MPH analysis.

References

Respective 43.5 and 29.2 month, but, these differences are not statistical significant. However, all of the 4 deaths listed in our study occurred in the positive HPV DNA group for which the 10 years Overall survival (OS) is thus significantly decreased.

Abstract 2022-RA-1588-ESGO

A COMBINATION OF MOLECULAR AND CLINICAL PARAMETERS PROVIDES A NEW STRATEGY FOR HIGH-GRADE SEROUS OVARIAN CANCER PATIENT MANAGEMENT

1Melissa Bradbury, 2Eva Borrias, 3Marta Vilàs, 4Josep Castellví, 5José Luis Sánchez-Iglesias, 6Assumpció Pérez-Benavente, 7Antonio Gil-Moreno, 8Anna Santamaria, 9Eduard Sabidó. Gynaecological Oncology, Hospital Universitari Vall d’Hebron, Barcelona, Spain; 2Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain; 3Cell Cycle and Cancer Laboratory, Vall Hebron Institute de Recerca, Barcelona, Spain; 4Pathology, Hospital Universitari Vall d’Hebron, Barcelona, Spain; 5Proteomics Unit, Centre de Regulació Genòmica, Barcelona, Spain

Introduction/Background High-grade serous carcinoma (HGSC) is the most common and deadly subtype of ovarian cancer. Although most patients will initially respond to first-line treatment with a combination of surgery and platinum-based chemotherapy, up to a quarter will be resistant to treatment. We aimed to identify a new strategy to improve HGSC patient management at the time of cancer diagnosis (HGSC-ILTR).

Methodology Ready-available formalin-fixed paraffin-embedded HGSC tissues obtained at the time of diagnosis were selected for proteomic analysis. Clinical data, treatment approach and outcomes were collected for all patients. Chemoresistant (TFIp < 6 m) and chemosensitive (TFIp > 6 m) groups were evaluated using discovery proteomics (discovery cohort, n=21). Protein candidates were verified in an independent cohort using targeted proteomics (verification cohort, n=88). Predictive analysis combined with a cross-validation was used to select those proteins able to correctly classify patients into chemoresistant and chemosensitive groups. The classification performance of the protein and clinical data combinations were assessed through the generation of receiver operating characteristic (ROC) curves.