prognosis, however markers that further risk-stratify intermediate groups are needed. Serum cancer antigen-125 (CA125) and human epididymis-4 (HE4) show promise as prognostic markers. The aim of this study was to evaluate the association between serum CA125, HE4 and endometrial cancer survival outcomes when stratified by molecular subgroup.

Methodology

Pre-treatment serum CA125 and HE4 levels were measured and endometrial tumours classified according to WHO molecular classification. The relationship between biomarkers and survival was evaluated using Kaplan-Meier analysis and multivariable cox regression.

Results

Overall, 327 women were included, with POLE status available for 216. Tumours were POLE-mutant (5%), p53-abnormal (11%), MMR-deficient (30%) and NSMP (54%). Median follow up was 50 months (IQR 30–60), during which 42 (13%) recurred and 71 (21%) women died. CA125 ≥35U/mL was independently associated with overall mortality [aHR=2.42 (95%CI:1.45–4.06), p=0.001], cancer specific death [aHR=2.00 (95%CI:1.04–3.87), p=0.04] and recurrence [aHR=2.69 (95%CI:1.38–5.27), p=0.004]. When stratified by molecular subgroup, CA125 ≥35U/mL and HE4 ≥150μmol/L were prognostic of overall survival in MMR-deficient [CA125: aHR=4.92 (95%CI:1.74–13.89), p=0.003 and HE4: aHR=4.03 (95%CI:1.34–12.11), p=0.01] and NSMP subgroups [CA125: aHR=3.72 (95%CI:1.30–10.67), p=0.01].

Conclusion

CA125 and HE4 may risk-stratify those at intermediate risk of recurrence and death. Evaluation in a larger population is required.

2022-RA-1480-ESGO

TRANSLACOL PROJECT: DIGITAL-PCR HUMAN PAPILLOMA VIRUS (HPV) DETECTION FOR RECURRENCE PREDICTION IN EARLY CERVICAL CANCER PATIENTS WITHOUT PELVIC LYMPH NODE INVASION

Rosa Montero Macías, 1Nicolas Robillard, 1Thomas Brunaeu, 1Coronado Pluvio, 2Mélanie Boulhic, 4Marie-Aude Le Frére-Belda, 4Ivana Stankovic, 5Marina Aida Angeles, 6Eliane Mery, 7Pascal Rigole, 8Cecile Badoual, 9Patrice Mathevet, 10Anne-Sophie Bats, 11Valérie Talvy, 12David Veyer, 12 Fabrice Lucercu, 12Hélène Pere.

1Gynecologic and Obstetrics, Simone Veil Hospital, Eaubonne, France; 2Virology Laboratory, European Georges Pompidou Hospital, Paris, France; 3Women’s Health Institute José Botella Llusia, Hospital Clinic San Carlos, Fundación de Investigación del Hospital Clinic San Carlos (IdiSCS), Universidad Complutense, Madrid, Spain; 4Pathology Department, European Georges Pompidou Hospital, Paris, France; 5Department of Surgical Oncology, Institut Universitaire du Cancer Toulouse Oncopole – Institut Claudius Regaud, Toulouse, France; 6Pathology Department, Institut Universitaire du Cancer Toulouse Oncopole – Institut Claudius Regaud, Toulouse, France; 7Univ. Paris-Saclay, Institut Curie, CNRS UMR 9187, Inserm U1196, Orsay, France; 8Centre hospitalier universitaire vaudois (CHUV), Lausanne, Switzerland; 9Gynecologic and Breast Oncologic Surgery Department, European Georges Pompidou Hospital, Paris, France; 10INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France; 11Breast, gynecology and reconstructive surgery unit. Curie Institute., Paris, France

Introduction/Background

In early cervical cancer (ECC) patients with nodal metastasis (N+) present worse survival. However, 10–15% of patients without nodal metastasis (N0) present the same survival to N+ patients. As in cervical cancer, HPV DNA could be assimilated to tumoral DNA, we evaluate the presence of HPV DNA in pelvic Sentinel lymph nodes (SLN) by new ultrasensitive droplet-based digital polymerase chain reaction (ddPCR) as a biomarker of survival.

Methodology

Inclusion criteria: ECC patients who underwent pelvic SLN detection N0 in pelvic lymph nodes. Associated pelvic lymph nodes samples were available for 60 patients with HPV16, HPV18 or HPV33 positive tumours. In SLN, after DNA extraction, HPV16 E6, HPV18 E7 and HPV33 E6 gene were respectively targeted and detected by ultrasensitive ddPCR optimized on two different platforms, the RainDrop Digital PCR System (RainDance Technologies, Bio-Rad, Hercules, CA) or the Biorad system.

Results

The spectra were divided into training- and testing-datasets with a ratio of 80/20 randomly + 10-fold cross validation and various classifiers were put under test: decision trees, discriminant analysis, support vector machines, logistic regression and random forest, with the latter giving the best results. In the classification report Precision-, Recall- and F1-scores varied from 0.93 to 1.00, 0.88 to 1.00 and 0.94 to 0.99 respectively.

Conclusion

These results confirm the reports from previous, smaller studies and show that AI-models could be useful in differentiating biofluid samples, such as urine, between patients and healthy controls. Further research is needed in order to confirm the validity of the method and to assess its potential on clinical applications.

2022-RA-1457-ESGO

GYNECOLOGICAL CANCER DETECTION USING FOURIER-TRANSFORMED INFRA-RED SPECTROSCOPY IN URINE SAMPLES: POTENTIAL AND ACCURACY OF MACHINE LEARNING PROCESSING

Francesco Vigo, Alessandra Tozzi, Muriel Dider, Vasileies Kavvadias, Andre Fedier, Viola Heinze-Imann-Schwartz, Tilemahos Kavvadias, Gynecology and Gynecologic Oncology, University Hospital of Basel, Basel, Switzerland

Introduction/Background

Making an early diagnosis of cancer is the challenge that modern medicine has been setting for several decades. In gynecology, no effective screening has yet been found and approved for endometrial and ovarian cancer, and, despite cervical cytology testing, cervical cancer remains a leading cause of morbidity and mortality among gynecological cancers worldwide. The emerging technique of liquid biopsy has been proposed as a method for detecting cancer in early stage using biofluids and their properties as biomarkers.

Methodology

In this study, we tested the application of an artificial intelligence (AI) algorithm on infra-red spectra taken from urine samples from 84 female patients with gynecological cancer (28 breast, 32 endometrial, 24 ovarian and 10 cervical) and 200 non-tumor patients who were used as controls. The spectra were normalized, and outlier values were detected and removed using a DBSCAN algorithm. To overcome the possible problem of an unbalanced dataset, we used a SMOTE algorithm enhancing the generalization of the predictive model. The AI-model was trained and tested in classifying healthy urine samples vs different cancer types.

Results

The spectra were divided into training- and testing-datasets with a ratio of 80/20 randomly + 10-fold cross validation and various classifiers were put under test: decision trees, discriminant analysis, support vector machines, logistic regression and random forest, with the latter giving the best results. In the classification report Precision-, Recall- and F1-scores varied from 0.93 to 1.00, 0.88 to 1.00 and 0.94 to 0.99 respectively.

Conclusion

These results confirm the reports from previous, smaller studies and show that AI-models could be useful in differentiating biofluid samples, such as urine, between patients and healthy controls. Further research is needed in order to confirm the validity of the method and to assess its potential on clinical applications.