Abstracts

CIRCULATORY HMGB-1 AS A PLAUSIBLE DIAGNOSTIC MARKER IN LIQUID BIOPSY OF CERVICAL CANCER

Alpana Sharma, Nidhi Gupta, Rehan Khan, Manoj Sharma. 1Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India; 2Department of Radiation Oncology, Delhi State Cancer Institute, Delhi, India

Introduction/Background Cervical cancer (CaCx) is one of the common malignancies in women worldwide. Autophagy is a significant hallmark of cancer wherein high mobility group box 1 (HMGB-1) plays a crucial role. Aberrant expression of HMGB-1 is associated with tumor development, progression and poor prognosis. There are no reports available studying HMGB-1, autophagy related molecule in context to clinical significance in cancer cervix. Thus, we aim to investigate the association between HMGB-1 and its associated molecules (RAGE, p53 & p62) in CaCx. We have also evaluated the clinical significance of serum HMGB-1 in CaCx diagnosis.

Methodology 50 subjects including 20 CaCx patients, 20 healthy women and 10 controls having gynecological disorder other than malignancy were recruited. Circulatory levels of HMGB-1 were measured by ELISA. mRNA and protein levels of HMGB-1 and its associated molecules were quantitated using Q-PCR and western blotting respectively in tissues of study subjects. The data obtained were then validated in vitro by siRNA-based silencing of HMGB-1. Data was statistically analyzed and ROC curve was plotted.

Results Circulatory levels of HMGB-1 were significantly higher in patients as compared to controls. mRNA and protein expression of HMGB-1 were significantly higher in tumor tissues. The levels of RAGE, p53 and p62 were also significantly altered than their expression in controls at mRNA and protein levels. ROC curve analysis showed better sensitivity and specificity for HMGB-1 for non-invasive diagnosis of CaCx. Furthermore, siRNA-mediated targeting of HMGB-1 significantly altered expression of associated molecules, thus, validating the patients’ data.

Conclusion HMGB-1 level could be a useful marker for evaluating disease and diagnosis in non-invasive liquid biopsy. Autophagy mediated HMGB-1/RAGE pathway might play a significant role in pathogenesis of CaCx. Validation in larger patient cohort might exploit HMGB-1 as a novel non-invasive diagnostic marker for CaCx in liquid biopsy in future.

THE PROGNOSTIC VALUE OF SERUM CA125 AND HE4 IN ENDOMETRIAL CARCINOMAS STRATIFIED BY MOLECULAR SUBGROUP

Chloe Evelyn Barr, Louise War, Nomanday Quille, Matthew Brown, Katarzyna Kedzierska, David Church, Richard Edmondson, Emma Jane Crosbie. 1University of Manchester, Manchester, UK; 2Manchester University NHS Foundation Trust, Manchester, UK; 3University of Oxford, Oxford, UK; 4Oxford University Hospitals NHS Foundation Trust, Oxford, UK

Introduction/Background Endometrial cancer is the commonest gynaecological malignancy. Molecular classification informs
prognosis, however markers that further risk-stratify intermediate groups are needed. Serum cancer antigen-125 (CA125) and human epididymis-4 (HE4) show promise as prognostic markers. The aim of this study was to evaluate the association between serum CA125, HE4 and endometrial cancer survival outcomes when stratified by molecular subgroup.

Methodology Pre-treatment serum CA125 and HE4 levels were measured and endometrial tumours classified according to WHO molecular classification. The relationship between biomarkers and survival was evaluated using Kaplan-Meier analysis and multivariable cox regression.

Results Overall, 327 women were included, with POLE status available for 216. Tumours were POLE-mutant (5%), p53-abnormal (11%), MMR-deficient (30%) and NSMP (54%). Median follow up was 50 months (IQR 30–60), during which 42 (13%) recurred and 71 (21%) women died. CA125≥35U/mL was independently associated with overall mortality [aHR=2.42 (95%CI:1.45–4.06), p=0.001], cancer specific death [aHR=2.00 (95%CI:1.04–3.87), p=0.04] and recurrence [aHR=2.69 (95%CI:1.38–5.27), p=0.004]. When stratified by molecular subgroup, CA125≥35U/mL and HE4≥150pmol/L were prognostic of overall survival in MMR-deficient [CA125: aHR=4.92 (95%CI:1.74–13.89), p=0.003 and HE4: aHR=4.03 (95%CI:1.34–12.11), p=0.01] and NSMP subgroups [CA125: aHR=3.72 (95%CI:1.30–10.67), p=0.01].

Conclusion CA125 and HE4 may risk-stratify those at intermediate risk of recurrence and death. Evaluation in a larger population is required.

2022-RA-1457-ESGO

GYNECOLOGICAL CANCER DETECTION USING FOURIER-TRANSFORMED INFRA-RED SPECTROSCOPY IN URINE SAMPLES: POTENTIAL AND ACCURACY OF MACHINE LEARNING PROCESSING

Francesco Vago, Alessandra Tozzi, Muriel Delder, Vasilieos Kavvadas, Andre Federi, Viola Heinzelmann-Schwarz, Tillmachaos Kavvadas, Gynecology and Gynecologic Oncoology, University Hospital of Basel, Basel, Switzerland

10.1136/ijgc-2022-ESGO.895

Introduction/Background Making an early diagnosis of cancer is the challenge that modern medicine has been setting for several decades. In gynecology, no effective screening has yet been found and approved for endometrial and ovarian cancer, and, despite cervical cytology testing, cervical cancer remains a leading cause of morbidity and mortality among gynecological cancers worldwide. The emerging technique of liquid biopsy has been proposed as a method for detecting cancer in early stage using biofluids and their properties as biomarkers.

Methodology In this study, we tested the application of an artificial intelligence (AI) algorithm on infra-red spectra taken from urine samples from 84 female patients with gynecological cancer (28 breast, 32 endometrial, 24 ovarian and 10 cervical) and 200 non-tumor patients who were used as controls. The spectra were normalized, and outlier values were detected and removed using a DBSCAN algorithm. To overcome the possible problem of an unbalanced dataset, we used a SMOTE algorithm enhancing the generalization of the predictive model. The AI-model was trained and tested in classifying healthy urine samples vs different cancer types.

Results The spectra were divided into training- and testing-datasets with a ratio of 80/20 randomly + 10-fold cross validation and various classifiers were put under test: decision trees, discriminant analysis, support vector machines, logistic regression and random forest, with the latter giving the best results. In the classification report Precision-, Recall- and F1-scores varied from 0.93 to 1.00, 0.88 to 1.00 and 0.94 to 0.99 respectively.

Conclusion These results confirm the reports from previous, smaller studies and show that AI-models could be useful in differentiating biofluid samples, such as urine, between patients and healthy controls. Further research is needed in order to confirm the validity of the method and to assess its potential on clinical applications.

2022-RA-1480-ESGO

TRANSLACOL PROJECT: DIGITAL-PCR HUMAN PAPILLOMA VIRUS (HPV) DETECTION FOR RECURRENCE PREDICTION IN EARLY CERVICAL CANCER PATIENTS WITHOUT PELVIC LYMPH NODE INVASION

1Rosa Montero Macias, 2Nicolas Robillard, 1Thomas Bruneau, 2Coronado Pluvio, 3Mélanie Boulié, 4Marie-Aude Le Fére-Beloa, 5Ivana Stanchevic, 6Martina Ada Angelle, 7Siliane Mery, 8Pascal Rigollet, 9Cécile Baudouin, 10Patrice Mathieu, 11Anne-Sophie Bats, 12Valérie Taly, 13David Veyrer, 14Fabrice Lecuru, 15Helene Pere, 16Gynecologic and Obstetrics, Simone Veil Hospital, Eaubonne, France; 17Virology Laboratory, European Georges Pompidou Hospital, Paris, France; 18Women’s Health Institute José Botella Llusia, Hospital Clinic San Carlos, Fundación de Investigacion del Hospital Clinico San Carlos (IdFScS), Universidad Complutense, Madrid, Spain; 19Pathology Department, European Georges Pompidou Hospital, Paris, France; 20Department of Surgical Oncology, Institut Universitaire du Cancer Toulouse Oncopole – Institut Claudius Regaud, Toulouse, France; 21Pathology Department, Institut Universitaire du Cancer Toulouse Oncopole – Institut Claudius Regaud, Toulouse, France; 22Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; 23Gynecologic and Breast Oncologic Surgery Department, European Georges Pompidou Hospital, Paris, France; 24Université Paris-Saclay, Institut Curie, CNRS UMR 9187, Inserm U1196, Orsay, France; 25Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; 26Gynecologic and Breast Oncologic Surgery Department, European Georges Pompidou Hospital, Paris, France; 27INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France; 28Breast, gynecology and reconstructive surgery unit. Curie Institute., Paris, France

Introduction/Background In early cervical cancer (ECC) patients with nodal metastasis (N+) present worse survival. However, 10–15% of patients without nodal metastasis (N0) present the same survival to N+ patients. As in cervical cancer, HPV DNA could be assimilated to tumoral DNA, we evaluate the presence of HPV DNA in pelvic Sentinel lymph nodes (SLN) by new ultrasensitive droplet-based digital polymerase chain reaction (ddPCR) as a biomarker of survival.

Methodology Inclusion criteria: ECC patients who underwent pelvic SLN detection N0 in pelvic lymph nodes. Associated pelvic lymph nodes samples were available for 60 patients with HPV16, HPV18 or HPV33 positive tumours. In SLN, after DNA extraction, HPV16 E6, HPV18 E7 and HPV33 E6 gene were respectively targeted and detected by ultrasensitive ddPCR optimized on two different platforms, the RainDrop Digital PCR System (RainDance Technologies, Bio-Rad, Hercules, CA) or the Biorad system. We compare two groups according to HPV DNA in SLN: positive or negative.

Results There was no difference between the negative HPV DNA SLN group and the positive HPV DNA SLN group in terms of patients and surgical-pathological characteristics, treatments and time of follow-up. Two patients in negative HPV DNA SLN group and 6 in positive HPV DNA SLN group presented recurrence and the mean time of recurrence was on clinical applications.