indicate that genomic alterations alone cannot explain acquired platinum resistance in many cases, and emerging evidence suggests epigenetic alterations may be critical. We wish to investigate epigenetic changes that may drive platinum resistance in HGSC by treating established HGSC cell lines and patient-derived cells with pulses of carboplatin and investigating the nature, kinetics and plasticity of platinum-induced epigenetic changes.

Methodology We will mimic, using in an in vitro two-dimen-
sional model, multiple cycles of platinum-based chemotherapy as used clinically. We will generate preliminary results from established cell lines and primary cultures. The primary cell cultures are collected from the ascites of patients with HGSC treated at Imperial College NHS Trust, London. Following validation (p53, PAX8 immunocytochemistry), carboplatin sensitivity is assessed (sulforhodamine B assay). Cells are then pulsed with four cycles of carboplatin (50μM for 6 hours) with a week of recovery between each cycle. Chemosensitivity of surviving cells is measured after each cycle. The cells are then harvested for downstream methylation (Illumina 850k array), transcriptomic (RNA sequencing) and chromatin accessibility (ATAC sequencing) assays. Cells are also imaged using STORM (Stochastic Optical Reconstruction Microscopy). Preliminary STORM data already indicate differences in chromatin structure and the distribution of specific histone modifications between paired sensitive and resistant HGSC cell lines.

Results We will receive the raw data within 8–12 weeks from now for the bioinformatic analysis. Differential gene expression analysis will uncover differently enriched pathways under the selective pressure of platinum-based chemotherapy.

Conclusion Understanding the epigenetic landscape of HGSC in real time using physiologically relevant models will allow us to identify possible therapeutic targets that could eventually prevent platinum resistance.

2022-RA-1251-ESGO

P-CADHERIN: A PROMISING PROGNOSTIC BIOMARKER FOR HOMOLOGOUS REPAIR PROFICIENT HIGH GRADE SEROUS OVARIAN CARCINOMA

1,2,3Rita Canario, 2Inês Morgado, 2Ana Sofia Ribeiro, 2Paula Lopes, 1Manuel R Teixeira, 1,3Carla Bartosch, 2,8Joana Paredes, 1Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; 2Cancer Metastasis Lab, Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal; 3Cancer Biology and Epigenetics Group, Instituto Português de Oncologia do Porto Francisco Gentil, EPE, Porto, Portugal; 2Oncometagenics Group, Instituto Português de Oncologia do Porto Francisco Gentil, EPE, Porto, Portugal; 2Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal; 3Histology and Electron Microscopy, Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal; 2Pathology Department, Instituto Português de Oncologia do Porto Francisco Gentil, EPE, Porto, Portugal; 2Faculdade de Medicina, Universidade do Porto, Porto, Portugal

10.1136/ijgc-2022-ESGO.889

Introduction/Background Homologous repair (HR) proficient HRG tumors constitute 2/3 of high grade serous ovarian carcinoma (HGSC), being associated with worse prognosis. Therefore, the identification of clinically relevant biomarkers is an urgent unmet clinical need. Once classic cadherins are transmembrane glycoproteins involved in cell-cell adhesion that are frequently deregulated in cancer, we aimed to: 1) characterize the expression pattern of E-cadherin (CDH1), N-cadherin (CDH2) and P-cadherin (CDH3); 2) evaluate their prognostic impact in terms of overall survival (OS), according to HR status.

Methodology Retrospective study using a convenience sample of archive human tissue (Fallopian tube epithelium (FTE), serous precursor lesions and chemo-naïf HGSC) from a Portuguese cancer centre. In vitro and in silico validation performed using HGSC cell lines (BG1 and OVCAR4 cell lines) and CCLE database, respectively. Protein expression evaluated using immunohistochemistry (H-scoring system) and western blot. Comparisons between groups were made using T-test and X², where appropriate. Survival analyses were estimated using Kaplan-Meier analysis and Log-rank test.

Results We included 321 samples (130 FTE, 53 precursor lesions and 138 HGSC; 41.2% BRCA1/2 or RADS1D mutated) from 221 patients. All HGSC co-expressed the 3 cadherins (28% with high co-expression scores). Expression pattern did not differ according to HR status. P-cadherin was significantly upregulated both in precursor lesions and HGSC, when compared with FTE. CDH3 expression was positively correlated with CDH1, EpCAM and GRHL2 and inversely correlated with VIM, both in in silico and in vitro. HGSC with high cadherin co-expression and high P-cadherin expression were significantly associated with shorter OS in the HR proficient subgroup.

Conclusion Our results suggest that P-cadherin upregulation may be an early event in the serous carcinogenesis and a poor prognosis biomarker in HR proficient HGSC. Functional assays are currently ongoing to unravel the biological mechanisms underlying P-cadherin role in this subgroup.

2022-RA-1342-ESGO

ETHNICITY-SPECIFIC SPECTRUM OF BRCA1, BRCA2 AND ATM PATHOGENIC VARIANTS IN OVARIAN AND BREAST CANCER PATIENTS FROM NORTH CAUCASUS

1Evgeny Imyanitov, 1Elvina Bakaeva, 1Alexandr Romanko, 1Ilya Stepmanov, 1Luiza Sul'tarova, 1Zaur Hamgov, 1Mudina Chakhkhiya, 1Mirza Murachuyev, 1Anna Sokolenko, 1N.N. Petrov Institute of Oncology, St-Petersburg, Russian Federation; 2Chechen Republican Cancer Center, Grozny, Russian Federation; 3Kabardino-Balkarian Republican Cancer Center, Nalchik, Russian Federation; 4Ingushetian Republican Cancer Center, Nazran, Russian Federation; 5Dagestan Republican Cancer Center, Makhachkala, Russian Federation

10.1136/ijgc-2022-ESGO.890

Introduction/Background North Caucasus hosts several large ethnic groups, which preserved their national identity through the course of history. These populations are likely to have a unique pattern of disease-predisposing alleles reflecting the genetic background of their ancestors.

Methodology This study involved ovarian cancer (OC) and breast cancer (BC) patients from Chechnya (n = 147), Kabardino-Balkaria (n = 139), North Ossetia (n = 83), Ingushetia (n = 88) and Dagestan (n = 137). The entire coding sequences of BRCA1, BRCA2 and ATM genes were analyzed by next-generation sequencing (NGS) in 180 OCs and 414 BCs.

Results Consecutive OC series were characterized by high frequency of BRCA1/2 mutations across all analyzed ethnic groups, ranging from 18% to 33%. BC patients, which were enriched by early-onset, family history-positive and receptor triple-negative disease, showed mutation rate varying from 4% to 14%. There were founder pathogenic alleles in Chechens (BRCA1 c.3629_3630delAG; 10 out of 20 BRCA1/2 mutations) and North Ossetians (BRCA2 c.6341delC; 6 out 10
Abstracts

2022-RA-1360-ESGO CIRCULATORY HMGB-1 AS A PLAUSIBLE DIAGNOSTIC MARKER IN LIQUID BIOPSY OF CERVICAL CANCER

Introduction/Background Cervical cancer (CaCx) is one of the common malignancies in women worldwide. Autophagy is a significant hallmark of cancer wherein high mobility group box 1 (HMGB-1) plays a crucial role. Aberrant expression of HMGB-1 is associated with tumor development, progression and poor prognosis. There are no reports available studying HMGB-1, autophagy related molecule in context to clinical significance in cancer cervix. Thus, we aim to investigate the association between HMGB-1 and its associated molecules (RAGE, p53 & p62) in CaCx. We have also evaluated the clinical significance of serum HMGB-1 in CaCx diagnosis.

Methodology 50 subjects including 20 CaCx patients, 20 healthy women and 10 controls having gynecological disorder other than malignancy were recruited. Circulatory levels of HMGB-1 were measured by ELISA. mRNA and protein levels of HMGB-1 and its associated molecules were quantitated using Q-PCR and western blotting respectively in tissues of study subjects. The data obtained were then validated in vitro by siRNA-based silencing of HMGB-1. Data was statistically analyzed and ROC curve was plotted.

Results Circulatory levels of HMGB-1 were significantly higher in patients as compared to controls. mRNA and protein expression of HMGB-1 were significantly higher in tumor tissues. The levels of RAGE, p53 and p62 were also significantly altered than their expression in controls at mRNA and protein levels. ROC curve analysis showed better sensitivity and specificity for HMGB-1 for non-invasive diagnosis of CaCx in liquid biopsy. Furthermore, siRNA-mediated targeting of HMGB-1 significantly altered expression of associated molecules, thus, validating the patients’ data.

Conclusion HMGB-1 level could be a useful marker for evaluating disease and diagnosis in non-invasive liquid biopsy. Autophagy mediated HMGB-1/RAGE pathway might play a significant role in pathogenesis of CaCx. Validation in larger patient cohort might exploit HMGB-1 as a novel non-invasive diagnostic marker for CaCx in liquid biopsy in future.

2022-RA-1446-ESGO COMPREHENSIVE ASSESSMENT OF GENE MUTATIONS REVEALED OVERLAPPING DEPENDENCIES FOR PARPI AND CHEMOTHERAPY RESPONSE IN OVARIAN CANCER

Introduction/Background PARP inhibitors (PARPi) have revolutionized the therapeutic landscape of epithelial ovarian cancer (EOC) prolonging the progression-free survival, especially in BRCA1/2 mutations carriers or in patients with defects in homologous recombination (HR) repair. However, it remains uncertain which PARPi to apply and how to select responders using clinical and molecular characteristics, especially in frontline therapy when platinum sensitivity is still unknown.

Methodology We selected 33 promising genes that showed a prediction of enhanced PARPi sensitivity after a systematic literature review and the exploration of publicly available CRISPR-Cas9 library screens and Genomics of Drug Sensitivity in Cancer data. We performed functional assessment in six constitutively Cas9 expressing OC cell lines and subsequent examined our set of genes using a CRISPR-Cas9 mutagenesis assay with various PARPi and carboplatin.

Results Our functional screen identified ten novel potential PARPi response biomarkers, with different impact on cell fitness and drug response. ATM was the only gene that produced an enhanced olaparib sensitivity in all the cell lines. Acquired olaparib sensitivity was also observed for MUS81, NBN, RAD51B/C, RNASEH2A, PALB2, XRCC1, and XRCC3 in at least 3 cell lines. CDK12 was identified as an essential gene in all the cell lines tested without altering the response to Olaparib. Since the best clinical biomarker of PARPi sensitivity remains the sensitivity to chemotherapy, we next compared dropout rates of top candidate genes under different PARPi (olaparib, niraparib, talazoparib) and carboplatin. Interestingly, we observed almost identical results, independently of tested gene and drug compound. This confirming the strong correlation of cancer cell response to DNA damaging drugs.

Conclusion Our data show various overlapping gene dependencies suggesting a general mechanism-of-action of PARPi and chemotherapy. Genetic screen of the identified set of genes correlated with PARPi sensitivity may allow a better stratification of patients with increase benefit to this treatment.

2022-RA-1449-ESGO THE PROGNOSTIC VALUE OF SERUM CA125 AND HE4 IN ENDOMETRIAL CANCERS STRATIFIED BY MOLECULAR SUBGROUP

Introduction/Background Endometrial cancer is the commonest gynaecological malignancy. Molecular classification informs