Introduction/Background Biomarkers are used to classify endometrial cancer (EC) into molecular subtypes such as TCGA and/or a surrogate classification (POLc mutated [mut], mismatch repair/microsatellite instability [MMR/MSI], TP53mut, and no specific mutation profile [NSMP]) or by estrogen receptor (ER) status. Here, we report on a post hoc analysis of objective response rate (ORR) by a surrogate classification of ER status. Here, we report on a post hoc analysis of objective response rate (ORR) by a surrogate classification of ER status.

Methodology GARNET is a multicentre, open-label, single-arm phase 1 study. Patients were assigned to cohort A1 (MMR deficient/MSI-high [dMMR/MSI-H EC]) or A2 (MMR proficient/microsatellite stable [MMRp/MSI-EC]) based on local assessment. Patients received 500 mg of dostarlimab IV Q3W for 4 cycles, then 1000 mg Q6W until disease progression, discontinuation, or withdrawal. The primary endpoints were ORR and duration of response by blinded independent central review. Molecular subtype was determined by POLc and TP53 mutation status by Foundation Medicine, and MMR/MSI status was determined by local immunohistochemistry or next-generation sequencing; all others were assigned as NSMP. The hierarchy for classification was POLcmut → MMR/MSI → TP53 status → NSMP. ER status was determined by local immunohistochemistry testing. Only patients with samples available for additional biomarker testing were included in the biomarker analysis.

Results 143 patients with dMMR/MSI-H EC and 156 patients with MMRp/MSI were included in the efficacy-evaluable population. ORRs were determined for molecular subtypes and ER expression (table 1). Safety has been previously reported.
Additionally, 30 hr-HPV+ women, who developed CIN3 at the first follow-up, then were surgically treated for the disease and testing hr-HPV- after, were also included. Exfoliated cervical specimens were used for whole genomic and bacterial DNA extraction. Vaginal microbiota composition was determined by 16S rRNA gene fragments sequencing. The SS methylation classifier assays were performed as previously described (Brentnall et al, 2015).

Results We identified unique microbial biomarkers associated with CIN3 development and recovery after surgical treatment. Hr-HPV+ women with CIN3 showed a significant overrepresentation of following microbial species: *Sneathia amnii*, *Megasphaera genomops*, *Pepstoportiococcus anaerobius* and *Achromobacter spanius*. *Sneathia amnii* was the only bacteria consistently associated with CIN3 in all group comparisons performed (p<0.01). Conversely, after successful treatment women were hr-HPV- and exhibited an increased representation of *Lactobacillus* species, especially *Lactobacillus gasseri* (p<0.01). Higher proportions of *Lactobacillus helveticus*, *Lactobacillus sputorynemus* and *Lactobacillus vaginalis* showed a potential protective role against CIN3 development in women with persistent hr-HPV infection. We confirmed SS scores are increasing with cervical disease severity. Increasing *Sneathia amnii* abundance was directly proportional to SS score increase during cervical disease development.

Conclusion Our results might indicate *Sneathia amnii* possible role in modifying the epigenetic landscape of the cervicovaginal space. Further investigations are required to establish a link between the identified potential vaginal microbiome biomarkers and their influence on epigenetic mechanisms.

Abstract 2022-RA-1198-ESGO

POST HOC ANALYSIS OF OBJECTIVE RESPONSE RATE BY MISMATCH REPAIR PROTEIN DIMER LOSS/MUTATION STATUS IN PATIENTS WITH MISMATCH REPAIR DEFICIENT ENDOMETRIAL CANCER TREATED WITH DOSTARLIMAB

1Anna V Tinker, 2Renaud Sabatier, 3Adriano Graivina, 4Lucy Gilbert, 5Jubilee Brown, 6Vanessa Samoulilian, 7Clare J Reade, 8Cara Mathews, 9Susan Ellard, 10Susana Banerjee, 11Maria Pillar Barretina-Ginesta, 12Rowan Miller, 13Charles Leath, 14Bhavana Pothuri, 15Tao Duan, 16Xinwei Han*, 17Eleftherios Zografos, 16Jennifer Veneris, 18Ana Oaknin.

1Department of Medicine, British Columbia Cancer, Vancouver Centre, University of British Columbia, Vancouver, BC, Canada; 2Department of Medical Oncology, Institut Paoli Calmettes, Aix-Marseille University, Marseille, France; 3Clinical Trial Unit, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; 4Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, McGill University Health Centre, Montreal, QC, Canada; 5Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC; 6Gynecologic Oncology Division, Centre Hospitalier de l’Université de Montréal (CHUM), Centre de Recherche du CHUM (CRCHUM) et Université de Montréal, Montreal, QC, Canada; 7Gynecologic Oncology, Juruawaski Cancer Center, Hamilton Health Sciences, Hamilton, ON, Canada; 8Women and Infants Hospital of Rhode Island, Providence, RI; 9BC Cancer-Kelowna, Kelowna, BC, Canada; 10Gynecology Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK; 11Medical Oncology Department, Institut Català d’Oncologia, Girona Biomedical Research Institute (IDIBGI), Girona University, Girona, Spain; 12University College London, St. Bartholomew’s Hospitals London, London, UK; 13University of Alabama at Birmingham, Birmingham, AL; 14Gynecologic Oncology Group (GOG) and Department of Obstetrics/Gynecology, Laura and Isaac Perlmuter Cancer Center, NYU Langone Health, New York, NY; 15GSK, Pennington, NJ; 16GSK, Waltham, MA; 17GSK, London, UK; 18Gynecologic Cancer Programme, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain.

10.1136/ijgc-2022-ESGO.887

Introduction/Background Mismatch repair (MMR) deficiency is caused by loss of expression of MMR proteins, MLH1, PMS2, MSH2, and/or MSH6, that function as homodimers (MLH1/PMS2 and MSH2/MSH6) to mediate DNA repair. Loss of function caused by mutation or epigenetic methylation leads to defective MMR and genomic instability. MMR deficient (dMMR) tumours can respond to anti-programmed death 1 (anti-PD-1) therapy. We report a post hoc analysis of objective response rate (ORR) with loss of MMR dimers and mutation status of MMR genes in patients with dMMR endometrial cancer (EC) treated with dostarlimab.

Methodology GARNET is a multicentre, open-label, single-arm phase 1 study. Cohort A1 enrolled patients with dMMR advanced/recurrent EC. Patients received 500 mg of dostarlimab intravenously Q3W for 4 cycles, then 1000 mg Q6W until disease progression, discontinuation, or withdrawal. MMR protein status (presence or loss) was determined by local immunohistochemistry. MMR gene mutation was determined by FoundationOne. MLH1 loss without MMR gene mutation was a surrogate indicator for epigenetic methylation.

Results Cohort A1 included 143 patients; MMR gene mutation data were available for 101 patients (table 1). Cohort A1 ORR was 45.5%, 66% of patients had loss of MLH1/PMS2; ORR was 48.9%. 11.2% of patients had loss of MSH2/MSH6; ORR was 56.2%. ORR was 41.7% for MLH1 loss with MMR gene mutation and 39.4% for MLH1 loss without MMR gene mutation.

Conclusion Patients with dMMR advanced/recurrent EC benefitted from dostarlimab, with no noticeable difference by dimer-pair loss or MMR gene methylation/mutation status. These data suggest the route to MMR deficiency does not influence response to dostarlimab.

Abstract 2022-RA-1218-ESGO

PHYSIOLOGICALLY RELEVANT TREATMENT MODELS TO INVESTIGATE EPIGENETIC MECHANISMS DRIVING PLATINUM RESISTANCE IN OVARIAN HIGH GRADE SEROUS CARCINOMA

1Raffaella Engati, 2Mi Qi Lim, 3Gaia Giannone, 2Darren P Ennis, 4Isabel CA Dye, 2Hasan B Mirza, 5Anna Fagnotti, 6Giovanni Scambia, 5Iain McNielh. 7Ospedale Policlinico Universitario Agostino Gemelli, IRCCS, Roma, Italy; 8Department of Surgery and Imperial College London, London, UK; 9Ovarian Cancer Action Research Centre, London, UK; 10Sacred Heart Catholic University, Rome, Italy.

110.1136/ijgc-2022-ESGO.888

Introduction/Background The prognosis for patients with platinum-resistant ovarian High Grade Serous Carcinoma (HGSC) remains poor. Data from the BriTROC-1 study...