tumours, 1 primary juvenile granulosa cell tumour and 1 primary Sertoli-Leydig cell tumour. Three samples were obtained from treatment-naïve GCT (2 immature teratomas and one dysgerminoma). For each phenotype of tumour cells, immune cells, endothelial cells and cancer-associated fibroblasts, we identified specific transcriptomic markers.

Results Based on differential expression analysis and expression of transcriptomic markers, we identified 27 clusters consisting of 9 tumour cell and 18 stromal cell clusters. The first results of subcluster analysis revealed nearly absence of B cells in all granulosa cell tumours. In addition, the immune cell subcluster mainly consists of T cells derived from the dysgerminoma (58%) and Sertoli-Leydig cell (20%) samples. Further characterisation and differentiation of distinct subclusters is currently ongoing and will be presented.

Conclusion With this analysis we aim to generate a publicly accessible comprehensive blueprint of the tumour micro-environment, aiding other researchers to gain high-resolution insights in the heterogeneity and complexity of these rare ovarian cancers.

Abstract 2022-RA-1194-ESGO

EFFICACY OF DOSTARLIMAB IN ENDOMETRIAL CANCER BY MOLECULAR SUBTYPE: A POST HOC ANALYSIS OF THE GARNET STUDY

1Anna V Tinker, 2Bhavana Pothuri, 3Lucy Gilbert, 4Renaud Sabatier, 5Jubilee Brown, 6Sharad Ghamande, 7Cara Mathews, 8David M O Malley, 9Valentina Bons, 10Adriano Gravina, 11Susana Banares, 12Rowan E Miller, 13Ioma Pikel, 14Manoosch R Mirza, 15Tao Duan, 16Xinwei Han, 17Efthieros Zografos, 18Jennifer Veneris, 19Ana Oskin, 20Department of Medicine, British Columbia Cancer, Vancouver, Centre, University of British Columbia, Vancouver, BC, Canada; 21Genomic Oncology Group (GOG) and Department of Obstetrics/Gynecology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY; 22Division of Gynecologic Oncology, McGill University Health Centre, Montreal, QC, Canada; 23Department of Medical Oncology, Institut Paoli Calmettes, Aix-Marseille University, Marseille, France; 24Division of Gynecologic Oncology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC; 25Department of Obstetrics and Gynecology, Georgia Cancer Center, Augusta University, Augusta, GA; 26Women and Infants Hospital of Rhode Island, Providence, RI; 27Division of Gynecologic Oncology and Gynecologic Oncology Phase I Program, The Ohio State University and the James Cancer Center, Columbus, OH; 28NEXT Oncology Hospital Universitario Quíntosalud Madrid, Madrid, Spain; 29Clinical Trial Unit, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; 30Gynaecology Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK; 31University College London, St. Bartholomew’s Hospitals London, London, UK; 32Department of Chemotherapy, Regional Center of Oncology, Gdansk, Poland; 33Department of Oncology, Rijnstateklinik, Maastricht, Netherlands; 34Department of Gynaecology, Copenhagen University Hospital, Copenhagen, Denmark; 35GSK, Pennington, NJ; 36GSK, Waltham, MA; 37GSK, London, UK; 38Gynecologic Cancer Programme, Vall d’Hebron Institut de Oncologia (VHIO), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain ed. 1Employed by GSK at the time the study was conducted, study was performed by local immunohistochemistry testing. Only patients with samples available for additional biomarker testing were included in the biomarker assessment.

Methods Patients were assigned to cohort A1 (MMR deficient/MSI-high [dMMR/MSI-H EC]) or A2 (MMR proficient/microsatellite stable [MMRp/MSS] EC) based on local assessment. Patients received 500 mg of dostarlimab IV Q3W for 4 cycles, then 1000 mg Q6W until disease progression, discontinuation, or withdrawal. The primary endpoints were ORR and duration of response by blinded independent central review. Molecular subtype was determined by POLm, and TP53 mutation status by Foundation Medicine, and MMR/MSI status was determined by local immunohistochemistry or next-generation sequencing; all others were assigned as NSMP. The hierarchy for classification was POLm→MMR/MSI→TP53 status→NSMP. ER status was determined by local immunohistochemistry testing. Only patients with samples available for additional biomarker testing were included in the biomarker assessment.

Results 143 patients with dMMR/MSI-H EC and 156 patients with MMRp/MSS were included in the efficacy-evaluable population. ORRs were determined for molecular subtypes and ER expression (table 1). Safety has been previously reported.

Conclusion The observed ORRs in each molecular subgroup were consistent with the overall ORR in each cohort. Differences by ER expression status were not observed. These findings support the importance of testing patients with EC for MMR/MSI biomarker status as a predictor of response. Additionally, data suggest that TP53 mutation or ER expression should not modify treatment approach. The data are of interest for hypothesis generation.

Abstract 2022-RA-1195-ESGO

LONGITUDINAL STUDY OF VAGINAL MICROBIOME PRE- AND POST-TREATMENT IDENTIFIES BIOMARKERS FOR CERVICAL INTRAEPITHELIAL NEOPLASIA 3 (CIN3)

Dorota Sobior-Bentkowska, Cristiana Barila, Belinda Nedjai, Centre for Prevention Detection and Diagnosis, Wolfson Institute of Population Health, London, UK

Introduction/Background Increasing evidence suggests vaginal dysbiosis is associated with persistence of human papillomavirus (HPV) infection and cervical intraepithelial neoplasia (CIN1–3) development. In this pilot study we aimed to investigate the potential of vaginal microbiome biomarkers to predict CIN3 development in high risk HPV positive (hr-HPV+) women.

Methodology 59 women with normal cytology at initial screening and follow-up over six years were enrolled from ARTISTIC trial. The cohort included 14 hr-HPV negative (hr-HPV-+) and 15 hr-HPV+ women through whole follow-up.