Introduction/Background With the approval of the first poly-
adenosine diphosphate-ribose polymerase inhibitor (PARPi),
olaparib therapy has demonstrated efficacy in first-line (1L)
maintenance for Breast Cancer gene mutated (BRCa)
advanced ovarian cancer (AOC) patients in 2018 and in combi-
nation with bevacizumab for Homologous Recombination
Deficient (HRD+) AOC patients in 2020. This study describes
biomarker testing and treatment patterns in a representative
AOC patient sample.

Methodology A retrospective observational study utilizing
the electronic health record-derived de-identified US-based Flatiron
Health database was performed including women ≥18
years at AOC diagnosis between July 2018 and December
2021 with ≥2 clinical visits. Patients were followed from diag-
nosis until 31 December 2021, cessation of dataset coverage, or
death, whichever occurred first. Biomarker testing was
defined as evidence of a test for BRCA or HRD.

Results Of the 1,107 patients included, most (88%, n = 976/
1,107) were BRCA tested, and 22.5% (n = 249/1,107) were
HRD tested. In BRCA-tested patients 25.3% (n = 247/976)
were additionally HRD tested. Among patients receiving
either a BRCA or HRD test (n = 978) 56.4% (n = 552/978)
were tested between AOC diagnosis and initiation of 1L sys-
temic therapy. With respect to 1L maintenance: among
BRCAm patients (n = 139), 33.1% (n = 46/139) were treated
with olaparib monotherapy vs. 6.5% (n = 9/139) with other
PARPi therapy. Among HRD+ patients, including those with
a pending HRD result who were BRCAm (n = 115), 20.0%
(n = 23/115) were treated with olaparib monotherapy, 13.9%
(n = 16/115) were treated with olaparib/bevacizumab combina-
tion therapy vs. 17.4% (n = 20/115) with other PARPi
therapy.

Conclusion Although the majority of patients were tested for
BRCA, a large majority of patients were not tested for HRD.
Following testing, few patients received PARPi as 1L main-
tenance therapy despite actionable biomarker results. This study
demonstrates the need for improved education surrounding
genetic testing to optimize therapeutic decisions for AOC
patients.

Abstract 2022-RA-1519-ESGO Table 1 Patient demographics by
biomarkers status and overall

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>BRCA****</th>
<th>BRCA-wild-type</th>
<th>HRD**</th>
<th>HRD*****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at advanced stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥65 years</td>
<td>613</td>
<td>121(19.9)</td>
<td>53(8.6)</td>
<td>487</td>
<td>25(4.7)</td>
</tr>
<tr>
<td>Race/ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>480</td>
<td>121(25.2)</td>
<td>53(10.9)</td>
<td>333</td>
<td>15(4.5)</td>
</tr>
<tr>
<td>White</td>
<td>227</td>
<td>62(27.5)</td>
<td>44(19.3)</td>
<td>168</td>
<td>9(4.9)</td>
</tr>
<tr>
<td>Missing</td>
<td>174</td>
<td>39(22.4)</td>
<td>10(5.8)</td>
<td>134</td>
<td>7(5.2)</td>
</tr>
<tr>
<td>Histologic diagnosis, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous</td>
<td>627</td>
<td>140(22.5)</td>
<td>60(9.6)</td>
<td>529</td>
<td>21(4.0)</td>
</tr>
<tr>
<td>Other</td>
<td>589</td>
<td>140(23.3)</td>
<td>42(7.0)</td>
<td>464</td>
<td>22(4.3)</td>
</tr>
<tr>
<td>Unknown/Not documented</td>
<td>16(1.4)</td>
<td>3(1.9)</td>
<td>12(7.5)</td>
<td>6(3.8)</td>
<td>1(0.6)</td>
</tr>
<tr>
<td>EOCO at initiation of IL maintenance, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,169</td>
<td>290(24.7)</td>
<td>108(37.3)</td>
<td>961</td>
<td>34(3.5)</td>
</tr>
<tr>
<td>2</td>
<td>577</td>
<td>140(24.5)</td>
<td>63(35.3)</td>
<td>417</td>
<td>14(3.4)</td>
</tr>
<tr>
<td>3</td>
<td>305</td>
<td>82(26.9)</td>
<td>18(59.4)</td>
<td>210</td>
<td>16(5.3)</td>
</tr>
<tr>
<td>Missing</td>
<td>65</td>
<td>22(34.0)</td>
<td>10(15.4)</td>
<td>45</td>
<td>5(11.1)</td>
</tr>
<tr>
<td>IL maintenance therapy, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>2,883</td>
<td>490(17.1)</td>
<td>101(20.5)</td>
<td>2,202</td>
<td>47(2.1)</td>
</tr>
<tr>
<td>Bevacizumab monotherapy</td>
<td>128</td>
<td>15(11.8)</td>
<td>28(88.2)</td>
<td>108</td>
<td>4(3.7)</td>
</tr>
<tr>
<td>Olaparib monotherapy</td>
<td>95</td>
<td>15(15.8)</td>
<td>38(40.0)</td>
<td>52</td>
<td>5(9.6)</td>
</tr>
<tr>
<td>Other PARPi combination therapy</td>
<td>117</td>
<td>11(9.4)</td>
<td>9(78.3)</td>
<td>51</td>
<td>4(3.4)</td>
</tr>
<tr>
<td>Olaparib and bevacizumab combination therapy</td>
<td>42</td>
<td>8(19.0)</td>
<td>34(80.9)</td>
<td>22</td>
<td>4(18.2)</td>
</tr>
<tr>
<td>Other maintenance therapy</td>
<td>30</td>
<td>5(16.7)</td>
<td>2(66.7)</td>
<td>18</td>
<td>3(15.0)</td>
</tr>
<tr>
<td>No maintenance therapy</td>
<td>702</td>
<td>64(9.1)</td>
<td>40(58.8)</td>
<td>560</td>
<td>18(3.2)</td>
</tr>
</tbody>
</table>

Discussion

Results Of the 229 patients who met the inclusion criteria,
169 (73.8%) were in the endophytic group and 60 (26.2%)
in the exophytic group. Patients in the endophytic group were
older (50 vs. 41 years, p=0.001), less frequently nulliparous
women (38.5% vs. 58.3%, p=0.008), more often with BMI >100
mm (73.8%) were in the endophytic group and 60 (26.2%)
were in the exophytic group. Concerns have
 arisen about the clinical significance of BOT with exophytic
growth pattern. This study aims to analyse and compare patients’
characteristics, sonographic features, and prognosis
related to both patterns.

Methodology A retrospective multicentre study was conducted.
Patients who underwent surgical treatment for BOT were
recruited and they were divided in two groups according to
microscopic aspect.

Results Of the 229 patients who met the inclusion criteria,
169 (73.8%) were in the endophytic group and 60 (26.2%)
in the exophytic group. Patients in the endophytic group were
older (50 vs. 41 years, p=0.001), less frequently nulliparous
women (38.5% vs. 58.3%, p=0.008), more often with BMI >100
millimeters (73.8%) were in the endophytic group and 60 (26.2%)
were in the exophytic group. Concerns have
arisen about the clinical significance of BOT with exophytic
growth pattern. This study aims to analyse and compare patients’
characteristics, sonographic features, and prognosis
related to both patterns.

Methodology A retrospective multicentre study was conducted.
Patients who underwent surgical treatment for BOT were
recruited and they were divided in two groups according to
microscopic aspect.

Discussion

Results Of the 229 patients who met the inclusion criteria,
169 (73.8%) were in the endophytic group and 60 (26.2%)
in the exophytic group. Patients in the endophytic group were
older (50 vs. 41 years, p=0.001), less frequently nulliparous
women (38.5% vs. 58.3%, p=0.008), more often with BMI >100
millimeters (73.8%) were in the endophytic group and 60 (26.2%)
were in the exophytic group. Concerns have
arisen about the clinical significance of BOT with exophytic
growth pattern. This study aims to analyse and compare patients’
characteristics, sonographic features, and prognosis
related to both patterns.

Methodology A retrospective multicentre study was conducted.
Patients who underwent surgical treatment for BOT were
recruited and they were divided in two groups according to
microscopic aspect.

Discussion

Results Of the 229 patients who met the inclusion criteria,
169 (73.8%) were in the endophytic group and 60 (26.2%)
in the exophytic group. Patients in the endophytic group were
older (50 vs. 41 years, p=0.001), less frequently nulliparous
women (38.5% vs. 58.3%, p=0.008), more often with BMI >100
millimeters (73.8%) were in the endophytic group and 60 (26.2%)
were in the exophytic group. Concerns have
arisen about the clinical significance of BOT with exophytic
growth pattern. This study aims to analyse and compare patients’
characteristics, sonographic features, and prognosis
related to both patterns.

Methodology A retrospective multicentre study was conducted.
Patients who underwent surgical treatment for BOT were
recruited and they were divided in two groups according to
microscopic aspect.