levels were positive in their second-look. 70% of patients with residual tumors having the greatest diameter less than or equal to 2 cm had normal CA125 with a mean value of 21 u/ml. 42% of patients with tumors having the greatest diameter greater than 2 cm had normal CA125, while all the 8 patients with no macroscopic tumor during surgery had normal CA125 level. These results show that the residual tumor size found in the second-look was related to the serum CA125 level.

Conclusion As CA125 levels within normal limits gave more false negatives, the necessity of second-look surgery can not be judged by serum CA125 assay though elevated CA125 levels do predict the presence of tumor.

Indocyanine green is a useful tracer for sentinel lymph node detection in ovarian cancer. New applications are being studied, as sentinel node detection in ovarian cancer. Methodology We are performing indocyanine green laparoscopic sentinel node detection in a woman affected by ovarian cancer. She had been diagnosed after an aneucotomata for a suspicious ovarian mass in another center. We inject indocyanine green in the infundibulopelvic and the ovarian ligament stumps through the abdominal wall.

Results After the detection of the sentinel nodes we perform the lymphadenectomy with the fluorescent camera on. We perceive the anatomical marks more clearly, the difference between the vessels and the lymphatic tissue became more standardized. After the detection of the sentinel nodes we perform the lymphadenectomy with the fluorescent camera on. We perceive the anatomical marks more clearly, the difference between the vessels and the lymphatic tissue became more standardized.

Conclusion Indocyanine green is a useful tracer for sentinel node detection. We propose that it could be a learning tool for beginners in the lymphadenectomy technique and in cases of special difficulty, for example in anatomical variations.

Introduction/Background Indocyanine green is being widely used in gynecology oncology; specially in sentinel node detection in endometrial cancer. New applications are being studied, as sentinel node detection in ovarian cancer. Methodology We are performing indocyanine green laparoscopic sentinel node detection in a woman affected by ovarian cancer. She had been diagnosed after an aneucotomata for a suspicious ovarian mass in another center. We inject indocyanine green in the infundibulopelvic and the ovarian ligament stumps through the abdominal wall.

Results After the detection of the sentinel nodes we perform the lymphadenectomy with the fluorescent camera on. We perceive the anatomical marks more clearly, the difference between the vessels and the lymphatic tissue became more standardized. Avoiding vessel injury is one of the challenges in the learning curve for para-aortic lymphadenectomy. Anatomical variations in the para-aortic region occurred in one third of the women.

Conclusion Indocyanine green is a useful tracer for sentinel node detection. We propose that it could be a learning tool for beginners in the lymphadenectomy technique and in cases of special difficulty, for example in anatomical variations.

Introduction/Background Proper diagnosis of abnormal ovarian masses determines the extent of surgical procedure and adjuvant chemo/radiation treatment. Occasionally, invasive, radiologic and laboratory tests are inconclusive and planning of upcoming steps in management requires individual approach. Detailed description of such cases in scientific literature could be beneficial for the management of similar occurrences.

Methodology 54 year old patient admitted to the onco-gynecology department with pain and unpleasant sensation in right hypogastric area. Contrast-enhanced CT scan revealed non-contrast-enhancing, nonhomogeneous cystic mass, 10.6 cm in diameter in place of right ovary. 2.7 cm and 2.3 cm masses were visualized in pararectal and presacral areas, embedded in retroperitoneal fat. Ovarian markers were within normal limits.