Conclusion The combination of cytology and immunocytochemistry of the fallopian tube smear could be used as a promising diagnostic tool for ovarian, fallopian tube and peritoneal carcinoma. Further evaluation with larger sample size is warranted.

Introduction/Background Adult-type granulosa cell tumor (GCT) is a rare subtype of ovarian cancer. It derives from sex cord-stromal cells of the ovary. The incidence of GCTs is 0.6–0.8/100,000, and it represents 3–5% of all ovarian malignancies.

Methodology A retrospective study concerning 40 cases of ovarian sex cord-stromal tumors (OCAST). Among them, we collected 17 cases of GCT. Epidemiological, clinical and radiological data were analyzed in this study.

Results GCT represented 42.5% of the OCASTs and 1.15% of all ovarian tumors during the study period. The average age was 42.3 years. The mean parity of patients was 4. Menopausal average age calculated at 49 years. In 80% of cases patients were asymptomatic; chronic pelvic pain 43.5%, menometrorrhagia 36.5%. For Three patients the tumor was discovered by chance: one during a caesarean scar and two during an ultrasonography for infertility. Physical exam revealed a palpable mass in 9 cases (52.9%), with an average size of 8 cm, and a solid consistency. On ultrasonography, we found a compartmentalized cystic tumor with vascularized partitions in color and pulse Doppler in 71.42% of cases. An effusion in the douglas has been described in 35.71%. The ultrasound and pulse Doppler was performed in 71.42% of cases. An effusion in the douglas was hyperemic in 2 cases. In CT we found the douglas has been described in 35.71%. The ultrasound and pulse Doppler was performed in 71.42% of cases. An effusion in the douglas was hyperemic in 2 cases. In CT we found

Conclusion The variability in the histological type globally and in the cellular arrangement particularly of granulosa tumors has helped to create a spectrum of radiological manifestations, whose good assimilation of their semiology will make it easier to pose the diagnosis before the surgery.

Introduction/Background We sought to identify predictors of survival in advanced ovarian cancer. We used a retrospective study of patients receiving standard of care PARP inhibitors (PARPi) maintenance therapy and the impact of toxicities on overall survival (OS) in advanced ovarian cancer (aOC).

Methodology Retrospective data collection was performed for patients (newly diagnosed or recurrent) who received at least one dose of maintenance Olaparib or Niraparib between April 2015–November 2021, at the Royal Marsden, UK. Pearson’s Chi-square and Log rank Kaplan Meier tests were used for categorical and continuous variables, respectively. Logistic regression was used to predict DLAE; Cox regression for OS.

Results 160 patients (median age 62.5 years, 41% (66/160) first-line, 49% (79/160) BRCA-mutated; median follow up on PARPi of 18.7 months; 68/160 were deceased at data cut-off) were included. DLAE were reported in 46.2% (74/160). Grade (G) 2 and G3 AE led to DLAE in 52.7% (39/74) and 32.4% (24/74) of cases, respectively. 78.2% (140/179) ≥G2 AEs occurred during the first 3 months. Hypertension (OR 2.6, p=0.03), upfront surgery (OR 2.7, p=0.01), previous G2 AE on chemotherapy (OR 1.8, p=0.01), residual disease (OR 2.4, p=0.04), and creatinine clearance<60 ml/min (OR 3.5, p=0.01) predicted higher risk of DLAE. HRD (OR 0.4, p=0.04), and Niraparib at 200 mg (OR 0.4, p<0.001) predicted lower risk of DLAE. G3/G4 hematological AE predicted better PFS at 24 months (OR 0.4, p=0.047). ≥G2 AEs in the first 3 months predicted better 5-year OS from diagnosis (OR 0.4, p=0.005) for the overall population. Dose reductions did not impact on OS (p=0.65).

Conclusion This is the first real-world data analysis suggesting that the development of early PARPi toxicities predicts improved 5-year OS in aOC. This model warrants further validation in prospective cohorts.

Introduction/Background MORAb-202 (farletuzumab ecteribulin) is an antibody-drug conjugate (ADC) comprised of the humanised antifolate receptor-alpha (FRα) monoclonal antibody, farletuzumab, and the cytotoxic microtubule inhibitor, eribulin, conjugated by a cathepsin B-degradable linker. MORAb-202 targets the eribulin payload to tumour cells expressing FRα, where internalisation leads to lysosomal cleavage of the ADC and intracellular release of eribulin, causing apoptosis, cell-cycle arrest, and bystander effects in adjacent cancer cells.