Introduction/Background Ovarian cancers (OC) are amongst the worst of all gynaecological cancers in terms of their morbidity, recurrence, and survival outcome. Optimal debulking with no macroscopic evidence of residual disease is associated with better progression-free and overall survival. Sugarbaker in 1998 developed a peritoneal cancer index (PCI) score (ranging from 0–39) to assess peritoneal disease spread in gastrointestinal cancers. The application of this score in ovarian cancers will validate it and help in the individualization of the treatment and in predicting operability and residual disease.

Methodology This prospective cross-sectional study was conducted in the department of Obstetrics & Gynaecology, Aga Khan Hospital Karachi after obtaining institutional ethical approval, from September 2021 to May 2022. All consecutive patients with a diagnosis of advanced ovarian cancer were included. The extent of ovarian cancer was calculated by using the Sugarbaker PCI score based on contrast-enhanced computed tomography (CT) pre-operatively. This score was then compared with the surgical PCI score ascertained intra-operatively. The association of both scores with residual disease status was also calculated.

Results A total of 26 patients were included in this study. The mean age of patients was 50.17±11.04. Twenty percent of patients underwent upfront surgery and 80% interval debulking surgery after neoadjuvant chemotherapy. The interclass correlation between CT and surgical PCI was 0.52 (95% CI:0.17–0.75). The agreement between the PCI scores is presented in the Bland and Altman graph (bias=1.115 ±1.96x4.61). Ninety percent of the patients with PCI score of <10 had no residual disease and surgical assessment. The mean duration of surgery and estimated blood loss was significantly low in PCI <10 as compared to score >10.

Conclusion PCI is an effective tool to predict the operability and residual disease in a noninvasive manner prior to surgery. This can be of tremendous help in the decision regarding the timing of surgery.
The objective of this video is to highlight the importance of performing a complete radical ovarian surgery that includes lymph node debulking of suspicious nodes.

Methodology We present the interval surgery of a 61-year-old woman, who was found to have an advanced serous papillary ovarian cancer, described as FIGO IIIC.

Results During the exploratory laparoscopy an important adenopathic lump was observed above inferior mesenteric, fixed to the vena cava, with a mass effect, unresectable from the outset. The surface of the spleen suggested the presence of metastatic implants; small subdiaphragmatic and peritoneal implants were observed, so treatment with neoadjuvant chemotherapy was decided. After neoadjuvant treatment the PET-CT shows an interaortocaval retroperitoneal hypermetabolic adenopathy, suggestive of tumour infiltration. No more mormetabolic lesions were observed, so interval surgery was decided. Interval surgery was uneventful, and lymph node debulking of the inter-aortocaval adenopathy was also performed. For this, a careful dissection of the adventitia of the aorta was performed until accessing the interaortocaval plane and locating the adenopathy (located between the exit of the inferior mesenteric artery and the crossing of the left renal vein). A complete exeresis of the adenopathy was achieved without incident.

Conclusion This video proves that the surgical procedure of debulking surgery of suspicious lymph nodes is feasible without major complications if performed by experienced gynaecologists.

Abstract 2022-RA-1172-ESGO

Figure 1 Kaplan meier plots for overall survival (OS): A and progression-free survival (PFS): B

Table 1 Kaplan meier plots for overall survival (OS): A and progression-free survival (PFS): B

Conclusion NACT/IDS and PDS strategy have the same effectiveness, in terms of surgical complications, recurrences and survival rates. However, if it is envisaged that no residual disease after surgery with appropriate patient selection for strategy, PDS strategy can be considered as leading option.

Methodology Our study retrospectively included 151 patients who were treated between January 2014 and May 2021 in Hacettepe University, Gynecological Oncology Clinic with a diagnosis of advanced stage high-grade serous carcinoma. These patients were divided into two groups by their strategies as 77 patients for PDS and 74 patients for NACT/IDS groups in terms of 1:1 ratio. Two groups were comparatively investigated for patient characteristics, staging, recurrence and survival rates, and follow up outcomes. $p<0.05$ was considered to be statistically significant.

Results The importance of performance status ($p=0.003$) and the clinical stage of patients ($p=0.001$) were shown regarding to patient selection for the appropriate strategy. Direct effect of 'no residual tumour after surgery' on overall survival rates was determined by multivariate analysis (HR: 0.57 [95% CI 0.34 – 0.96]; $p=0.034$). In terms of overall survival (HR: 0.74 [95% CI 0.45 - 1.22]; log rank $p=0.234$) and progression-free survival (HR: 0.728 [95% CI 0.50 - 1.06]; log rank $p=0.083$), it was shown that both of strategies were similar for effectiveness. There was no impact of pandemic on strategy selection ($p=0.073$).

Introduction/Background High grade serous carcinomas are the most common subtype of ovarian cancer. Mostly the patients diagnosed with advanced stage disease. The main approach for management consists of primary debulking surgery (PDS). However, some patients cannot be good candidates for primary surgery, and neoadjuvant chemotherapy (NACT) followed by interval debulking surgery (IDS) emerges as an alternative strategy. In our study, it was aimed to show that both strategies applied in our clinic are similar in terms of effectiveness.

Methodology Our study retrospectively included 151 patients who were treated between January 2014 and May 2021 in Hacettepe University, Gynecological Oncology Clinic with a diagnosis of advanced stage high-grade serous carcinoma. These patients were divided into two groups by their strategies as 77 patients for PDS and 74 patients for NACT/IDS groups in terms of 1:1 ratio. Two groups were comparatively investigated for patient characteristics, staging, recurrence and survival rates, and follow up outcomes. $p<0.05$ was considered to be statistically significant.

Results The importance of performance status ($p=0.003$) and the clinical stage of patients ($p=0.001$) were shown regarding to patient selection for the appropriate strategy. Direct effect of 'no residual tumour after surgery' on overall survival rates was determined by multivariate analysis (HR: 0.57 [95% CI 0.34 – 0.96]; $p=0.034$). In terms of overall survival (HR: 0.74 [95% CI 0.45 - 1.22]; log rank $p=0.234$) and progression-free survival (HR: 0.728 [95% CI 0.50 - 1.06]; log rank $p=0.083$), it was shown that both of strategies were similar for effectiveness. There was no impact of pandemic on strategy selection ($p=0.073$).

Conclusion NACT/IDS and PDS strategy have the same effectiveness, in terms of surgical complications, recurrences and survival rates. However, if it is envisaged that no residual disease after surgery with appropriate patient selection for strategy, PDS strategy can be considered as leading option.