but responses are short-lived. Immune-checkpoint inhibitors like atezolizumab as single agents have limited activity in ovarian cancer. There is a biologic rationale to combine checkpoint inhibitors with chemotherapy and bevacizumab, however, the role of such combination for the management of ovarian cancer is so far undefined. Because of the intimate relationship between angiogenesis and immunosuppression, it is expected that inhibition of both pathways could lead to synergism and more durable clinical benefit. The addition of a chemotherapeutic agent is expected to lead to the release of tumor antigens and enhance the efficacy of immunotherapy. Therefore, we aim to test the efficacy of atezolizumab in combination with non-platinum-based chemotherapy and bevacizumab vs the combination of a non-platinum-based chemotherapy and bevacizumab alone. 

Methodology AGO-OVAR 2.29 is a randomized (1:1), double-blinded, phase III trial evaluating the efficacy and safety of atezolizumab plus bevacizumab and chemotherapy (weekly paclitaxel or PLD) compared with placebo, bevacizumab and chemotherapy in patients with recurrent ovarian, fallopian tube, or primary peritoneal cancer with 1st or 2nd relapse within 6 months after completing platinum-based chemotherapy or 3rd relapse. Patients are treated until progression or unacceptable toxicity. A de novo tumor biopsy to determine the PD-L1 expression status prior to randomization for stratification is mandatory. Co-primary endpoints are overall survival and progression-free-survival. Target recruitment is 550 patients. Safety interim analyses were performed after inclusion of 24, 60 and 120 patients who had completed at least one cycle.

Results Screening was stopped on 23-May-2022. As of 30-May-2022, 554 patients have been randomized.

Conclusion This concept might open the possibility to investigate the synergetic effect of immune-checkpoint and angiogenesis inhibitors in ROC.
Introduction/Background A common treatment approach for patients with FIGO stage III/IV ovarian cancer is neoadjuvant chemotherapy (NACT) with interval debulking surgery (IDS) with subsequent adjuvant chemotherapy. However, not all patients undergo the intended surgery for multiple reasons. Outcome data for these patients is limited, however, reduced survival has been reported in literature. This study aimed to assess and compare the oncological outcomes of patients who did not undergo IDS following NACT for stage III/IV ovarian cancer in Wales.

Methodology The Wales Cancer Network identified all patients with stage III/IV ovarian cancer scheduled for NACT across the three Cancer centres in Wales in 2018 and 2019. The Welsh Clinical Portal and CANISC were used to gather data on patients’ demographics, disease stage, treatment plans, complications, reasons for not having surgery, and oncological outcomes.

Results 197 patients were included, of which 128 (65%) underwent surgery and 69 (35%) did not. Across Wales, the patients who had surgery were on average younger (64.2 vs 70.8 years), had fewer comorbidities (average 2.7 vs 3.0), a better performance status at diagnosis (average 0.8 vs 1.5), and had the same average BMI (28.9) compared to those who did not. The majority of patients who underwent surgery had zero complications (58.6%). Across Wales, 99.13%, 93.91%, 74.78%, and 58.26% of patients who underwent IDS survived at 6, 12, 24, and 36 months respectively, compared to 90.00%, 73.33%, 40.00%, and 20.00% who did not (p=0.0034, 0.0001, 0.0001, 0.0001 respectively).

Conclusion Across Wales, 35% of women with stage III/IV ovarian cancer did not undergo their intended surgery after NACT. In this retrospective cohort, the survival was lower in those who did not have surgery. Common reasons for not proceeding with surgery included disease progression, fitness for surgery, and patient choice.

Abstracts

ONCOLOGICAL OUTCOMES IN PATIENTS HAVING NEOADJUVANT CHEMOTHERAPY WHO DO NOT UNDERGO INTENDED INTERVAL DEBULKing SURGERY

1Si Liang Yao, 1Megan Simpkins, 2Liam Rider, 3Jieun Cao, 4Camilla Underwood, 2Monica Tyczynska, 1Anasulaia Ajakaiye, 5Tineke Vergeldt, 1Rachel Jones, 1Louise Hanna, 1Kenneth Lim, 2Aarti Sharma, 1Kerry Luttsman-Sing, 2Rosalind Jones, 1Richard Peever, 4Abigail Hayward, 2Sadie Jones, 1Adam Naiakretki, 1Cardiff University, Cardiff, UK;
2University Hospital of Wales, Cardiff, UK;
3Udywy Gwynedd Hospital, Bangor, UK;
4Singleton Hospital, Swansea, UK;
5Velindre Hospital, Cardiff, UK;
6NHS Wales Health Collaborative, Cardiff, UK

10.1136/ijgc-2022-ESGO.629

INTRODUCTION TO A SECOND-GENERATION CHITINASE RESPONSE AFTER 3 CYCLES OF CHEMOTHERAPY AS A PROMISING MARKER OF CHEMOSensitivity AN ANCILLARY ANALYSIS OF THE GINECO-ENGOT EWOC-1 TRIAL

1,2Jarin Chikh, 3Charlotte Cuero, 4Marie Valero, 5Olivier Colomban, 4Aude-Marie Savoye, 1Dominique Berton, 1Laetitia Stefani, 1Michel Fabbro, 1Cyril Blonz, 1Olivier Tredan, 1Margot Noblecourt, 1Oana Cociocarusa, 6Delphine Mellon-Grange, 7Fabrice Barlesi, 8Eric Pujade-Lauraine, 9Gilles Freyer, 9Benoit You, 2Hubert Vidal, 2Claire Falandry, 1Laboratoire de Biochimie et Biologie Moléculaire – Centre Hospitalier Lyon Sud, Lyon, France; 1SPB, Faculté de Pharmacie de Lyon-UCBL1, Lyon, France; 2Laboratoire CARMEN INSERM U1060, INRA U1397, Université Lyon 1, INSIA Lyon, Oullins, France; 3Biochemistry Department, Hospices Civils de Lyon, Pierre-Benite, France; 4INSERM U1060, INRA UMR 1397, INSIA-Lyon, CarMeN Laboratory, Université Lyon 1, Pierre-Benite, France; 5Hôpital Lyon-Sud –HospiCivis Civils de Lyon, Lyon, France; 6Université Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon-Sud, EA UCBL/HCl 3738 CICLY, Lyon, France; 7Institut Jean Godinot, Reims, France; 8Institut de Cancérologie de l’Ouest (ICO), Saint-Herblain, France; 9GINECO and Centre Hospitalier Annecy Genevois, Pringy, France; 10GINECO and Institut du Cancer de Montpellier, Montpellier, France; 11Hôpital Privé du Confluent S.A.S., Nantes, France; 12GINECO and Centre Léon Bérard, Lyon, France; 13GINECO and Centre Hospitalier de Cholet, Cholet, France; 14Centre Hospitalier du Mans, Le Mans, France; 15CH CORNUAILLE, Quimper, France; 16Gustave ROUSSY, Villejuif, France; 17ARCAGY-GINECO, Paris, France; 18GINECO and Centre Hospitalier Lyon-Sud, Lyon, France; 19Medical Oncology, Institut Cancérologique des Hospices Civils de Lyon (IC-HCL), CITOHL, Université Lyon, CICLY and GINECO, Lyon, France; 20Laboratoire CarMeN INSERM U1060/Université Lyon1/INRAE U. 1397/Hospices Civils Lyon Bâtiment CENS-EU 2D Hôpital Lyon Sud Secteur 2, Pierre-Benite, France; 21Geriatrics, Hospices Civils de Lyon – Centre Hospitalier Lyon Sud, Saint-Genis-Laval, France

10.1136/ijgc-2022-ESGO.630

INTRODUCTION TO A SECOND-GENERATION CHITINASE RESPONSE AFTER 3 CYCLES OF CHEMOTHERAPY AS A PROMISING MARKER OF CHEMOSensitivity AN ANCILLARY ANALYSIS OF THE GINECO-ENGOT EWOC-1 TRIAL

1,2Jarin Chikh, 3Charlotte Cuero, 4Marie Valero, 5Olivier Colomban, 4Aude-Marie Savoye, 1Dominique Berton, 1Laetitia Stefani, 1Michel Fabbro, 1Cyril Blonz, 1Olivier Tredan, 1Margot Noblecourt, 1Oana Cociocarusa, 6Delphine Mellon-Grange, 7Fabrice Barlesi, 8Eric Pujade-Lauraine, 9Gilles Freyer, 9Benoit You, 2Hubert Vidal, 2Claire Falandry, 1Laboratoire de Biochimie et Biologie Moléculaire – Centre Hospitalier Lyon Sud, Lyon, France; 1SPB, Faculté de Pharmacie de Lyon-UCBL1, Lyon, France; 2Laboratoire CARMEN INSERM U1060, INRA U1397, Université Lyon 1, INSIA Lyon, Oullins, France; 3Biochemistry Department, Hospices Civils de Lyon, Pierre-Benite, France; 4INSERM U1060, INRA UMR 1397, INSIA-Lyon, CarMeN Laboratory, Université Lyon 1, Pierre-Benite, France; 5Hôpital Lyon-Sud –HospiCivis Civils de Lyon, Lyon, France; 6Université Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon-Sud, EA UCBL/HCl 3738 CICLY, Lyon, France; 7Institut Jean Godinot, Reims, France; 8Institut de Cancérologie de l’Ouest (ICO), Saint-Herblain, France; 9GINECO and Centre Hospitalier Annecy Genevois, Pringy, France; 10GINECO and Institut du Cancer de Montpellier, Montpellier, France; 11Hôpital Privé du Confluent S.A.S., Nantes, France; 12GINECO and Centre Léon Bérard, Lyon, France; 13GINECO and Centre Hospitalier de Cholet, Cholet, France; 14Centre Hospitalier du Mans, Le Mans, France; 15CH CORNUAILLE, Quimper, France; 16Gustave ROUSSY, Villejuif, France; 17ARCAGY-GINECO, Paris, France; 18GINECO and Centre Hospitalier Lyon-Sud, Lyon, France; 19Medical Oncology, Institut Cancérologique des Hospices Civils de Lyon (IC-HCL), CITOHL, Université Lyon, CICLY and GINECO, Lyon, France; 20Laboratoire CarMeN INSERM U1060/Université Lyon1/INRAE U. 1397/Hospices Civils Lyon Bâtiment CENS-EU 2D Hôpital Lyon Sud Secteur 2, Pierre-Benite, France; 21Geriatrics, Hospices Civils de Lyon – Centre Hospitalier Lyon Sud, Saint-Genis-Laval, France

10.1136/ijgc-2022-ESGO.630

Introduction/Background Older patients with ovarian cancer have poor outcomes; the geriatric vulnerability score (GVS) was validated as a prognostic factor for survival. During aging the circulating Chitinase 3-like-1 (CHI3L1), and its related chitinase enzymatic activity increase, leading to propose them as ‘aging biomarkers’. However, recent data support the implication of chitinase-like proteins in the proliferation of several cancers. The EWOC-1 trial (NCT02001272) showed a lower efficacy of the carboplatin monotherapy (Cmono) arm compared to carboplatin-paclitaxel (CP) in vulnerable patients; a serum sampling was provided on inclusion, after 3 and 6 courses of chemotherapy for the measurement of chitinase activity in each arm (A: standard CP; B: Cmono; C: 3weeks/4 CP), to identify whether its association with patients’ outcomes and inversely, the differential impact of the distinct treatment regimens on it.

Methodology Chitinase activity was assessed as previously published. Were analyzed both its absolute value on inclusion (‘chitinase baseline’) and its kinetics after 3 chemotherapy courses (‘chitinase response’).

Results Serum samples could be retrieved for 46/120 patients on inclusion and 33 after 3 chemotherapy courses. Chitinase baseline median activity (in U/L, IQR) was 1727.9 (1459.3; 1878.3) at inclusion, similar in the 3 arms; no association was shown with any of the geriatric vulnerability parameters, nor the GVS, nor overall survival. Chitinase response was significantly different in the 3 arms, with a median (in U/L,