Introduction/Background Ovarian cancer (OC) represents the most lethal gynaecological malignancy, with approximately 80% of advanced OC patients experiencing a recurrence after primary treatment. The role of radiotherapy in recurrent OC has been recently explored. The aim of this study was to assess the efficacy of advanced radiotherapy at the time of the 1st platinum-sensitive oligometastatic recurrence.

Methodology Patients with epithelial OC undergoing primary treatment at the European Institute of Oncology, Milan, from January 2010 to April 2019 were retrospectively identified. Among those, patients treated with stereotactic or intensity-modulated radiotherapy (IMRT) alone at the time of 1st platinum-sensitive oligometastatic recurrence were included. Patients with encephalic or vertebral recurrence were excluded. Response rate (based on RECIST 1.1 criteria), predictor of treatment response, and survival outcome were evaluated with appropriate statistical analysis.

Results In total, 31 patients meeting inclusion criteria were included. Of them, 18(58.1%) had a complete response, 7 (22.6%) a partial response, and 6 (19.3%) a progressive disease [1(3.2%) both in-field and out-of-field, 5(16.1%) out-of-field]. Among them, 30(96.8%) had a subsequent relapse, of which 22(73.3%) were treated with chemotherapy while the remaining 8(26.7%) underwent further radiotherapy or thermoablation. The median interval between radiotherapy and the subsequent recurrence requiring chemotherapy was 16 months (range 4–126), with 18(58.1%) patients having a subsequent recurrence requiring chemotherapy after 12 months or more. Upon univariate analysis, median platinum-free interval before radiotherapy in patients with complete/partial response was longer than in patients with progressive disease (23 vs. 11 months, p=0.06), although the association did not meet the conventional level of statistical significance.

Conclusion In our experience, radiotherapy alone represents a valuable option in the treatment of 1st oligometastatic platinum-sensitive recurrent epithelial OC, providing a good response rate and allowing to extend the platinum-free interval. Further studies are required to confirm our results and identify predictors of treatment response.

Abstract 2022-RA-1029-ESGO

COMPARISON OF O-RADS AND IOTA ADNEX MODEL CRITERIA WITH PATHOLOGY RESULTS IN ADNEXIAL MASSES

Ahmet Arif Filiz, Cemal Resat Atalay. Gynecology and Obstetrics, Ankara City Hospital, Ankara, Turkey

Introduction/Background International Ovarian Tumor Analysis-Adnex Model (IOTA Adnex Model) and Ovarian-Adnexal Reporting and Data System (O-RADS) have been developed for the diagnostic accuracy of adnexal masses in the preoperative period. This study aimed to evaluate O-RADS and IOTA Adnex Model scores of patients who had surgery for an adnexal mass and and interpret the roles of scores in management.

Methodology The study consists patients who had surgery for an adnexal mass in Ankara City Hospital Gynecology and Obstetrics Hospital between 2019–2021 and met the inclusion criteria. Demographic characteristics, ages, parities, menopause statuses, ultrasonographic morphologies of the patients were recorded. IOTA Adnex Model and O-RADS scores calculated based on these data.

Results This study consisted of 413 patients whom 295 benign and 118 malign patients. Mean of CA 125 of the benign patients were 15,2 (2-3096) unit/ml and mean of CA 125 of the malign patients were 72,5 (5–9820) unit/ml. According to the ROC analysis for CA 125 in postmenopausal patients, AUC:0,847 (%95 CI, 0,79–0,9), cut-off: 34,8 unit/ml, sensitivity:%70,8 and specificity:%83,8. In the premenopausal group, AUC: 0,727 (%95 CI, 0,65–0,80), cut-off:180,5 unit/ml, sensitivity:%32,1 and specificity:%92,7 (p<0,001). Sensitivity and specificity of the IOTA Adnex Model and O-RADS were found %78,8-%48,3 and %97,9–93,5 respectively for the distinction of the malignancy (p<0,001). There is moderate agreement between IOTA Adnex Model and O-RADS(κ = 0,53).

Conclusion IOTA Adnex Model shows similar specificity but better sensitivity than O-RADS for the distinction of the malignancy. In case of increasing sensitivity without decreasing specificity and clarifying the ultrasonographic features for the physicians who will apply the model, IOTA Adnex Model can be used widely as a ultrasonography-based risk stratification model in adnexal masses.