among which activation of DNA replication and changes in cell cycle regulation were notable. Organoids which retained regeneration capacity after carboplatin exposure, showed a sustained shift in expression of stemness associated surface marker CD133+ in the subsequent passages as showed by fluorescence-activated cell sorting and Western blot

Conclusion We hereby propose OFE assay as a novel functional readout for carboplatin sensitivity. Furthermore, expression profile changes in organoids during acute response to carboplatin provide insights into specific signaling hallmarks that are associated with resistance to carboplatin, and could help identify the cellular mechanism behind the process.

2022-RA-935-ESGO

DEVELOPMENT OF AN ACADEMIC GENOMIC INSTABILITY SCORE FOR OVARIAN CANCERS

1. Raphael Leman, 1Étienne Muller, 1Nicolas Goardon, 1Imène Chentli, 1Aurore Tranchant, 1Angelina Legros, 1Laurent Castera, 1Alain Morel, 1Christel Brunet, 1Véronique Body, 2Eric Fernandez, 3Florence Coulet, 4Catherine Genelet, 5Hans-Joachim Lück, 6Piera Gargiulo, 6Antonio González-Martin, 6Christoph Grimm, 7Isabelle Ray-Coquard, 1Eric Pujade-Lauraine, 1Dominique Vau. 1Centre François Baclesse, Caen, France; 2Inserm U1245, Normandie Univ, Rouen, France; 3Institut de Cancérologie de l’Ouest – Paul Papin, Angers, France; 4Département de Génétique, U’O’C Arc&génétique et Génomique des tumeurs solides, Hôpital Pitie-Salpêtrière, Paris, France; 5Gustave Roussy, Paris, France; 6Gynekologisch-Onkologische Praxis, Hannover, Germany; 7Clinical Trials Unit, National Cancer Institute of Naples, Naples, Italy; 8Medical OncoLOGy Department, Clínica Universitária de Navarra, Madrid, Spain; 9Vienna General Hospital, Vienna, Austria; 10Association de Recherche Cancers Gynécologiques (ARCAGY), Paris, France; 11Groupe d’Investigateurs Nationaux pour l’Etude des Cancers Ovariens (GINECO), Paris, France

Abstract

Introduction/Background High-grade serous ovarian cancers with deficiency of homologous recombination DNA repair (HRD) are sensitive to the combination of bevacizumab and olaparib as maintenance therapy in PAOLA-1 trial (NCT02477644). HRD status is determined by mutational scars within tumor genome. Here, we developed a new method called GiSscar (Genomic Instability Scar) suitable with the most of the academic molecular biology laboratory constraints.

Methodology We used sequencing data from a limited panel of 127 genes including genes involved in homologous recombination to detect mutational scars, i.e. chromosomal breaks, genomic deletion/duplication and allelic imbalance. The score was trained among 146 prospective samples from ovarian tumors with HRD status previously defined by Myriad Genetics® (MG). For clinical validation, we sequenced 469 DNA tumor samples from the PAOLA-1 trial and correlated GiSscar status with progression free survival (PFS).

Results On the 146 prospective samples, GiSscar reached an accuracy of 92.46% compared to MG HRD status, with a sensitivity of 95.38% and specificity of 90.12%. On the 469 PAOLA-1 samples, patients with GiSscar HRD positive (including tBRCAm) tumors showed a significant prolonged PFS in olaparib vs placebo arm (median PFS: 38.7 vs 20.1 months, hazard ratio (HR): 0.470 [95% CI, 0.334–0.661] as well those with GiSscar HRD positive tBRCAw tumors (23.9 vs 16.4 months, HR: 0.529 [95% CI, 0.323–0.836]). Patients with negative GiSscar HRD tumors did not benefit from addition olaparib (median PFS: 16.6 vs 16.5 months, HR: 1.045 [95% CI 0.757–1.441]). Furthermore, our approach reduced by 90% (4 vs 47 tumors) the number of inconclusive status compared to MG.

Conclusion GiSscar demonstrated high accuracy with MG data with less inconclusive results and identifies patients who could best benefit from maintenance olaparib added to bevacizumab. GiSscar test performances allow the deployment of this test in academic molecular biology laboratories.

2022-RA-937-ESGO

RUCAPARIB MAINTENANCE AFTER BEVACIZUMAB MAINTENANCE FOLLOWING CARBOPLATIN BASED CHEMOTHERAPY IN PRIMARY OVARIAN CANCER

1. Elena-Ioana Braicu, 2Klaus Pietzner, 3Jessica Dypan, 4Günther Rogmann, 4Pauline Wimberger, 5Eva Egger, 6Jens Gerber, 6Michael Eichbaum, 7Fiorian Heitz, 8Tomas Kupec, 9Martin Christoph Koch, 10Mustafa Deryal, 11Ralf Witteler, 11Antje Sperfeld, 11Oliver Tomé, 12Barbara Schmalfeldt, 12Frederik Marmé, 12Bastian Czagalla, 12Jalid Sehouli. 1Klinik für Gynäkologie, Charité Universitätsmedizin Berlin, Berlin, Germany; 2North-Eastern German Society of Gynecological OncoLaboratories, Berlin, Germany; 3ZAGÖ – am Helios Klinikum Krefeld, Krefeld, Germany; 4Klinik und Poliklinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Carl Gustav Carus at the Technischen Universität Dresden, Dresden, Germany; 5Nationalen Zentrum für Tumorerkrankungen Dresden, Dresden, Germany; 6Gynäkologie und Gynäkologische Onkologie, Universitätsklinikum Bonn, Bonn, Germany; 7Frauenklinik und Geburtshilfe, Städtisches Klinikum Dessau, Dessau, Germany; 8Klinik für Frauenheilkunde und Geburtshilfe, Helios Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany; 9Gynäkologie und Gynäkologische Onkologie, Kliniken Essen-Mitte, Essen, Germany; 10Clinic for gynaecology and obstetrics, RWTH Aachen, Aachen, Germany; 11Department of Obstetrics and Gynecology, AöRheginium Ansbach Hospital, Ansbach, Germany; 12Department for Gynecology and Obstetrics, CantiusKlinikum Saarbrücken St. Thekla, Saarbrücken, Germany; 13Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Münster, Münster, Germany; 14Gynäkologie, Helios Klinikum Berlin-Buch, Berlin, Germany; 15Klinik für Gynäkologie and Geburtshilfe, St. Vincentius-Kliniken Karlsruhe, Karlsruhe, Germany; 16Klinik und Poliklinik für Gynäkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany; 17Medizinische Fakultät Mannheim, Universität Heidelberg, Universitätsklinikum Mannheim, Mannheim, Germany; 18Department of Obstetrics and Gynecology, University Hospital, LMU München, München, Germany

Abstract

Introduction/Background Ovarian cancer (OC) is the fifth most common cause of death from cancer in women in Europe, with most patients being diagnosed in advanced stages. The most common histological subtype is high grade serous OC, which is characterised by deficiency in homologous recombination. The current standard therapy for advanced OC patients is debulking surgery, followed by platinum based chemotherapy and bevacizumab (bev), followed by maintenance therapy with bev or monotherapy with PARP inhibitors (PARPi). The anticancer effects of PARPi seem to be increased by the addition of antiangiogenic drugs. Preclinical data showed increased HRD in tumours pre-treated with bev, and clinical trials showed a benefit of the combination of antiangiogenic drugs and PARPi vs. PARPi alone. Hence, in this placebo-controlled study we will evaluate rucaparib maintenance following bevacizumab maintenance for the treatment of advanced primary high grade BRCAwt OC (centrally tested by NGS analysis).

Methodology This study will randomise 190 patients with histologically confirmed advanced (FIGO stage IIIA- IV) high grade serous or high grade endometrioid OC, fallopian tube cancer, primary peritoneal cancer or clear cell carcinoma of the ovary at the ration of 2:1 to receive either rucaparib 600 mg BID or placebo as maintenance therapy following first line chemotherapy with 6 cycles of Carboplatin/Paclitaxel and at least 12 months of bevacizumab. Subsequent maintenance therapy with rucaparib will continue for 24 months or until disease progression, unacceptable toxicity, or withdrawal.