institution preoperatively due to suspected malignancy. Group 2 comprises patients with incidental findings of OVCA or BOT operated at a non-tertiary center that were referred to our institution postoperatively for completion of surgical staging and adjuvant treatment.

Results Out of 390 patients, 224 were diagnosed with BOT or OVCA. Clinicopathological data are provided in Table 1, mean follow-up was 63 months. Compared to patients in group 1, patients in group 2 underwent a higher number of surgical interventions (2.1 vs. 1.3, P < .001), showed a longer time from diagnosis until start of chemotherapy (45 vs. 33 days, P = .006), and from diagnosis until completion of staging surgery (73 vs. 32 days, P < .001). Incidental diagnosis was not associated with increased risk of recurrence in patients with BOT (HR 4.6, 95% CI 0.4–52.3, P = .216), early stage (HR 0.6, 95% CI 0.2–1.7, P = .348) or advanced stage (HR 0.9, 95% CI 0.5–1.5, P = .631) OVCA.

Conclusion Although patients with incidental findings of OVCA or BOT have a longer time until completion of surgical staging and start of chemotherapy our results showed no compromise in oncological outcome. Our findings further highlight the importance of an untimely referral of these patients to a tertiary centre.
when procedure was not necessary. However, incidence of splenectomy and of the extirpation of non-regional bulky nodes is associated with increased PCI, a previously identified by us strong predictor of high-grade postoperative complications.

2022-RA-883-ESGO

RARE CANCERS IN GYNECOLOGIC ONCOLOGY, ENGOT INITIATIVE FOR A EUROPEAN REGISTRY

1. Lorenzo Cippi, 2Alice Bergamini, 3Elena Biagioli, 4Olesea Solheim, 5Antonio Gonzalez-Martin, 6Nelleke Ottevanger, 7Elis van Nieuenhuyzen, 8Annette Hasenburg, 9Karen Cadoo, 10Elena Ioana Bruiu, 11Marcella Hall, 12Dirk Bauerschlag, 13Stefanie Aust, 14Ross Glasspool, 15Christianne Lok, 16Jacobo Korach, 17David Cibula, 18Sandro Pignata, 19Isabel Ray-Coquard, 20ENGOT Rare Tumors Group. Obstetrics and Gynecology, Grande Ospedale Metropolitano Niguarda, MaNGO, Milan, Italy; 21San Raffaele Hospital, MITO, Milan, Italy; 22Mastro Nieri Institute, MaNGO, Milan, Italy; 23Department of gynecological oncology, Norwegian Radiumhospital, Oslo University Hospital, NSGO, Oslo, Norway; 24Clinica Universitaria de Navarra, GEICO, Madrid, Spain; 25EORTC Gynaecological Cancer Group, EORTC Gynaecological Cancer Group, Netherlands; 26Gynaecological Oncology, BGCO, Leuven, Belgium; 27Clinic for Women’s Health, Department of Gynecology and Obstetrics, Medical Center Johannes Gutenberg University, AGO, Mainz, Germany; 28St. James’s Hospital Dublin, Trinity St. James’s Cancer Institute, Cancer Trials Ireland, Dublin, Ireland; 29Charité Universitätmedizin Berlin, Berlin, NORG, Germany; 30EAST AND NORTH HERTFORDSHIRE NHS TRUST, NCH, Northwood, UK; 31University Medical Center Schleswig-Holstein, AGO, Kiel, Germany; 32Medical University of Vienna, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, A-AGO, Wien, Austria; 33Beatos West of Scotland Cancer Centre and Institute of Cancer Sciences, University of Glasgow, SORCTG, Glasgow, UK; 34Department of gynaecological oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, DGOOG, Amsterdam, Netherlands; 35Gynaecology, Sackler School of Medicine, ISGO, Tel Aviv, Israel; 36Department of Obstetrics and Gynecology, General University Hospital in Prague, First Faculty of Medicine, Charles University, CECEGO, Prague, Czech Republic; 37Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, MITO, Naples, Italy; 38Centre Leon Bérard, Laboratoire RESHAPE U1290, Université Claude Bernard, GINECO, Lyon, France

Results The survey showed an interest in adopting the database in 94.4% of responders. The database has been developed, revised by a reviewers committee, and shared for data entry.

Conclusion National collaborative groups will participate independently in setting up a REDCap-based database with the same database structure. A central ENGOT coordination will ensure the appropriate data entry and registry management for future data analysis. This project will allow improving the knowledge of these rare cancers in Europe.

2022-RA-884-ESGO

WHOLE-BODY DIFFUSION-WEIGHTED MRI (WB-DWI/MRI) FOR THE PREDICTION OF RESECTABLE DISEASE AT THE TIME OF SECONDARY CYTOREDUCTIVE SURGERY FOR RELAPSED EPITHELIAL OVARIAN CANCER

1. Sander Dumont, 2,3Vincent Vandecaveye, 2,3Raphaëla Carmen Dresen, 4Elis van Nieuenhuyzen, 5Thijs Baert, 5Steny Han, 5Patrick Neven, 5Patrick Berteloot, 6Frédéric Amant, 5Toon van Gorp, 1Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium; 2Department of Radiology, University Hospitals Leuven, Leuven, Belgium; 3Division of Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; 4Division of Gynaecological Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium

Introduction/Background Current ESGO guidelines recommend secondary cytoreductive surgery (SCS) followed by chemotherapy in case of first recurrent epithelial ovarian cancer and a platinum-free interval (TFIp) of >6 months as it is the best strategy to prolong progression free survival (PFS) and overall survival (OS). Two prediction models have been developed to improve patient selection for complete resection: AGO and iMODEL. Whole-body diffusion-weighted MRI (WB-DWI/MRI) is a powerful tool to predict resectable disease, however, it has not yet been integrated in the two prediction models. Our aim was to identify the best tool for prediction of resectable disease.

Methodology A retrospective cohort study was performed in the University Hospitals Leuven, a tertiary referral centre, using a database search identifying patients between January 2012 and December 2021. Inclusion criteria were: (a) first relapse after 6+ months TFIp, and (b) WB-DWI/MRI. AGO and iMODEL scores were calculated when MRI demonstrated resectable disease.

Results In total, 246 patients were included. Based on the WB-DWI/MRI, 124 (50.4%) underwent SCS. The performance of WB-DWI/MRI, AGO, and iMODEL score are summarized in Table 1. WB-DWI/MRI (without the use of any model) had the highest accuracy (89%) compared with the addition of AGO and iMODEL scores: 44.6% (p<0.001) and 80.2% (p=0.54), respectively. Adding the AGO or iMODEL score had a negative effect on both the sensitivity and specificity in predicting resectable disease.

Furthermore, when WB-DWI/MRI revealed resectable disease, these patients had a significant longer median PFS: 42.9 months vs. 10.0 months (Hazard Ratio [HR]: 0.35; 95%CI 0.26–0.48) and median OS: 64.9 months vs. 31.4 months (HR: 0.36; 95%CI 0.25–0.53) for resectable versus non-resectable disease, respectively.