Methodology We present 18 cases of arterio-ureteral fistulae that presented with lifethreatening hematuria. 10 patients were treated successfully with ureteral covered stent placement (Allium ureteral stent 200x9 mm) and 8 patients are combined treated with ureteral (Allium ureteral stent 200x9 mm) and endovascular (Endovascular Stent Graft) covered stents placement. Mean surgery time was 55 min (16–95 min). The position, continuity and sealing of the stent in the ureter and vessel were documented by radiological contrast imaging.

Results All patients were treated successfully with ureteral or with combined ureteral and endovascular covered stent placement.

Conclusion In conclusion, ureteral or with combined ureteral and endovascular covered stent placement of covered stents is a feasible minimal invasive therapeutic option for the treatment of acute life-threatening hemorrhage due to arterio-ureteral fistulae.

Abstract 2022-RA-797-ESGO Figure 1 A) Table displaying the stage migration from FIGO (2009) to FIGO (2018); B) Alluvial plot illustrating the migration from FIGO (2009) to FIGO (2018) (stages I–IV), and the disease-specific survival (DSS) for the same patients (median [interquartile range] follow-up time 77 [45–113] months). The color of the alluvial splinos are blue if the FIGO (2018) reclassification was based on pathology and red if the reclassification was based on imaging; C) Time-dependent receiver operating characteristics (tDRoc) curves for predicting disease-specific survival (DSS) at 5 years were generated for FIGO (2009) versus FIGO (2018).
Abstracts

Results When reassigning FIGO stage, 47% (224/473) of the CC patients had a different FIGO (2018) stage than the FIGO (2009) stage; 34% (163/473) were upstaged, whereas 13% (61/473) were downstaged using FIGO (2018). For FIGO (2018), stage I (n=272) was defined by pathology findings in 81% (220/272), whereas stages II (n=64), III (n=104), and IV (n=33) were mostly defined by imaging findings (85%: 170/201). For FIGO (2018) stage III, stage migration was seen in 95% (99/104), mainly due to positive lymph nodes on imaging (in 89%; 93/104). FIGO (2018) yielded higher area under the ROC curve (AUC) for predicting 5-year DSS than FIGO (2009) (AUC 0.89 vs. AUC 0.83, respectively; p = 0.009).

Conclusion Restaging to FIGO (2018) resulted in stage migration in 47% of the patients. FIGO (2018) stage I was mostly defined by pathology results, while imaging findings had a strong impact on stages II-IV. FIGO (2018) stage yielded higher AUC than FIGO (2009) for predicting 5-year DSS in CC.

2022-RA-802-ESGO SPATIAL TILS DENSITY CORRELATES WITH LOCOREGIONAL SPREAD AND SURVIVAL IN PATIENTS WITH CERVICAL CANCER TREATED WITH CHEMO-RADIOTHERAPY
Mathilde Del, Claire Illac, Amélie Lusque, Erwan Gabiashe, Martina Aida Angeles, Gwenael Ferron, Alejandra Martinez. IUCT Oncopole, Toulouse, France

Introduction/Background Tumor-infiltrating lymphocytes (TILs) have a central role in the control of tumor growth, distant progression, treatment response, and survival in most solid tumors. Their role as a potential biomarker has been poorly investigated in cervical malignancy. The study aimed to evaluate the correlation between TILs topography, clinical characteristics, and patient outcomes in patients with cervical cancer treated with chemo-radiation.

Methodology Patients with locally advanced cervical cancer, negative aerobic pretherapeutic FDG-PET/CT uptake, available clinical data and FFPE material, and pre- and post-treatment MRI treated at the University Cancer Institute of Toulouse, France, were selected. Imaging was centrally reviewed, and intraepithelial and stromal tumor-infiltrating lymphocytes count was performed by an expert gynecologic oncology pathologist.

Results TILs were assessed in 86 patients. 29 patients (34.9%) were considered as highly infiltrated by intraepithelial TILs (>1%), and 26 patients (30.2%) had a high stroma TILs infiltrate above 60%. Low intraepithelial TILs were associated with higher body mass index (25.5 versus 21.8 in the iTILs >1% group, p=0.0221), higher pretreatment MRI tumor size (compared to median tumor size, 31 patients (63.3%) were larger in the iTILs 0–1% group versus 11 patients (39.3%) in the iTILs >1% group (p=0.0421)). Low intraepithelial TILs were also associated with higher para-aortic lymph node metastasis (8 (14.8%) versus 1 (3.4%)), and poorer overall survival (figure 1), but these differences did not reach statistical significance.

Conclusion Our results suggest that intraepithelial infiltrating lymphocyte density is a potential prognostic non-invasive biomarker in patients treated with CRT for LACC. Furthermore, TILs seem to be associated with loco-regional tumor spread, and survival. These results need to be validated in larger series including the analysis of TILs subtypes.

2022-RA-806-ESGO IMPLICATION OF FDG-PET/CT PARAMETERS FOR PREDICTING PROGNOSIS OF HIGH GRADE NEUROENDOCRINE CERVICAL CANCER PATIENT
Changho Song, Ju-Hyun Kim, Yong-Man Kim. OBGYN, Seoul Asan medical center, Seoul, Korea, Republic of

Introduction/Background Neuroendocrine cervical cancer is a rare subtype of cervical cancer which account for 1.0–1.5% of all type of cervical cancer. Neuroendocrine cervical cancer is more likely to metastasize to lymph nodes and invade to lymph vascular space at the time of diagnosis resulting in higher rate of recurrence and worse 5-year survival rate. Due to the rarity of the tumor, it has been understudied. There is an unmet need for developing clinical markers for predicting prognosis of this particular type of tumor. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) can yield quantitatively calculated parameters. There are some reports showing predictive value of these parameters in squamous cell carcinoma or adenocarcinoma of cervix. However, studies to identify the association between FDG-PET/CT parameters and prognosis of neuroendocrine cervical cancer is still lacking.

Methodology This retrospective study includes 29 neuroendocrine cervical cancer patients treated at Asan medical center, Seoul, Korea from 2007 to 2021. All patients underwent whole-body FDG-PET/CT before initial treatment. The following parameters were measured and recorded: SUVmax, SUVpeak, MTV2.5, MTV3.0, TLG2.5 and TLG3.0. The association between these parameters and disease free survival and overall survival were analyzed using univariate and multivariate Cox proportional hazards model.

Results Median age of patient was 45 years, ranging from 29 to 70. Median follow up period was 40 month ranging from 4 to 184. Median disease free survival (DFS) time was 17 month and median overall survival (OS) time was 40 month. For DFS, univariate analysis showed that age, TLG2.5 and 3.0 were statistically significant. Whereas, multivariate analysis showed that only age and TLG3.0 were the independent