TWENTY YEARS OF EXPERIENCE WITH LESS RADICAL FERTILITY-SPARING SURGERY IN EARLY-STAGE CERVICAL CANCER

Martin Hruda, Helena Robová, Lukáš Rob, Michael Jiří Haláška, Jana Drozerová, Tomáš Fichlík, Hana Maliková. Department of Obstetrics and Gynaecology, University Hospital Krvátecká Vinohrady, Praha 10, Czech Republic

10.1136/ijgc-2022-ESGO.57

Introduction/Background The standard procedure in cervical cancer is radical hysterectomy (RH) and pelvic lymphadenectomy (PLND). Because of the increasing age of women at childbirth, fertility becomes a major challenge. We present 20 years of experience with two-step less radical fertility-sparing surgery in women with IA1, LVSI positive, IA2 and IB1 (<2 cm, infiltration less than half of stromal invasions.

Methodology Preoperative workout consisted of histopathological diagnosis and magnetic resonance imaging along with ultrasonographic volumetry. We then performed laparoscopic sentinel lymph node mapping (SLNM) with frozen section (FS) followed by PLND and ‘selective parametrectomy’ (removal of afferent lymphatic channels from the paracervix) in case of a negative result. If verified by definitive histopathology, patients were treated by simple trachelectomy (IB1) or large cone (IA1/IA2) biopsy 1 week after primary surgery.

Results From 1999 to 2018, 91 women were enrolled in the study (median age 29.1 years, range 21–40). Of these 91 women, 51 (56.0%) were nulliparous. The detection rate of SLNs was 100% per patient and the specific side detection rate 96.7%. Positive lymph nodes were diagnosed in nine cases (9.8%). These women then underwent RH. Fertility was spared in 80 women but 4 recurred locally (5.0%). The mortality rate was 0.0%. The median follow-up was 149 months.

Conclusion Less radical fertility-sparing surgery with SLNM is safe in cervical cancers <2 cm at the largest diameter and infiltrating less than half of the cervical stroma. The recurrence rate is acceptable with no mortality. Morbidity with this procedure is low. Extended and accurate follow-up is necessary and human papillomavirus – high risk (HPV-HR tests seem to be useful in such follow-up assessment.

COMBINED URETHRAL AND ENDOVASCULAR TREATMENT OF ARTERIOURETERAL FISTULAE WITH FULLY COVERED STENTS

1Joerg Neymeyer, 2Sarah Weinberger, 3Thorsten Schlomm, 3Safwan Omran. 1Urology – Pelvic Floor Competence Center Charité (PF3C), Charité – Medical University Berlin, Berlin, Germany; 2Urology – Pelvic Floor Competence Center Charité (PF3C), Charité Medical University Berlin, Berlin, Germany; 3General, Vascular and Thoracic Surgery, Charité – Medical University Berlin, Berlin, Germany

10.1136/ijgc-2022-ESGO.58

Introduction/Background Arterio-ureteral fistulae are abnormal connections between an artery and the ureter and carry a high mortality. All patients were treated with a uretral and an endovascular fully covered stent placement. Objectives: Arterio-ureteral fistulae are abnormal connections between blood vessels and the ureter and most commonly involve the iliac arteries and the ureter. They are rare entities, and only around 200 cases have been reported in the literature. However, the majority of fistulae are secondary, occurring due to radiation or surgery for urological and gynecological cancers, vascular or pelvic surgeries. Our procedure consents include a statement regarding the use of images such as radiographs without patient identifiers for teaching and illustrative purposes. Our institutional policy does not require patient consents for case reports. Case reports are also exempt from institutional board review.
Methodology

We present 18 cases of arterio-ureteral fistulae that presented with lifethreatening hematuria. 10 patients were treated successfully with ureteral covered stent placement (Allium ureteral stent 200x9 mm) and 8 patients are combined treated with ureteral (Allium ureteral stent 200x9 mm) and endovascular (Endovascular Stent Graft) covered stents placement. Mean surgery time was 55 min (16–95 min). The position, continuity and sealing of the stent in the ureter and vessel were documented by radiological contrast imaging.

Results

All patients were treated successfully with ureteral or with combined uretral and endovascular covered stent placement.

Conclusion

In conclusion, ureteral or with combined uretral and endovascular covered stent placement of covered stents is a feasible minimal invasive therapeutic option for the treatment of acute life-threatening hemorrhage due to arterio-uretral fistulae.

2022-RA-797-ESGO PET/CT NEGATIVE PREDICTIVE VALUE IN LOCALLY ADVANCED CERVICAL CANCER

Elena Rodriguez Gonzalez, Myriam Gracia, Violeta Romero, Maria Carbolloni, Virginia García, Jaime Siegrist, Ignacio Zapardiel, María Dolores Diestro, Alicia Hernández,

Hospital Universitario La Paz, Madrid, Spain

10.1136/ijgc-2022-ESGO.59

Introduction/Background

Para-aortic lymph nodes involvement in locally advanced cervical cancer is a determining factor in patient’s treatment as it determines radiotherapy field. PET/CT is used to assess lymph node involvement at this level, although it is not exempt from false negatives. Our aim is to compare PET/CT with para-aortic (PA) lymphadenectomy, in order to assess the false negative rate of this test, as well as the factors associated with a greater probability of false negatives.

Methodology

Retrospective descriptive study

Cases of locally advanced cervical cancer with negative PET/CT that underwent para-aortic lymphadenectomy from 2018 to 2022 were collected. During recruitment period, a new PET/CT technique was developed. Outcomes of both types of PET/CT were compared.

Results

A total of 11 patients underwent radiological node staging with the first type of PET/CT and 12 patients with the new one. Mean age was 52.09 (±15.3). Epidermoid was the most frequent subtype (65.2%). Mean time between PET/CT and surgery was 21.77 days (±10.53). Mean number of lymph nodes obtained were 12.48 (±5.10). 91.3% (21) of patients had a negative pathological result and 8.7% (2) were positive (PET/CT false negatives). One patient presented macrometastasis and one patient isolated tumor cells. Negative predictive value of first type of PET/CT was 0.90 and that of the new one was 0.91. One of false negative cases had a uni-laterally positive pelvic PET/CT and the other bilaterally.

Conclusion

Our false negative rate of PET/CT was similar to that described in literature. No significant differences between the two types of PET/CT were observed. Pelvic lymph node involvement seems to be associated with a higher false negative PET/CT. After analyzing our data, we don’t have enough evidence to avoid performing PA lymphadenectomy in these patients as routine, having to individualize the risk-benefit in each case.


Kari Strøno Wagner-Larsen, Njål Lura, Mari Kyllesø Halle, Øyvind Salvesen, Bjørn Inge Bertelsen, Katherine Wiese, Camilla Krakstad, Ingrid Haldorsen, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway; Clinical Research Unit, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway

10.1136/ijgc-2022-ESGO.60

Introduction/Background


Methodology

In total, 473 CC patients diagnosed during 2002–2020 with available pretreatment imaging were included. Clinicopathological information and results from magnetic resonance imaging (MRI) (473/473), fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) (180/473), and chest/abdominal CT (394/473) were recorded (collected from patient records). All patients were staged according to FIGO (2009)- and retrospectively according to the FIGO (2018) criteria. Time-dependent receiver operating characteristic (tdROC) curves for predicting disease-specific survival (DSS) at 5 years were generated for FIGO (2009) versus FIGO (2018).

Abstract 2022-RA-799-ESGO Figure 1 A) Table displaying the stage migration from FIGO (2009) to FIGO (2018); B) Alluvial plot illustrating the migration from FIGO (2009) to FIGO (2018) (stages I–IV), and the disease-specific survival (DSS) for the same patients (median [interquartile range] follow-up time 77 [45–113] months). The color of the alluvial splinos are blue if the FIGO (2018) reclassification was based on pathology and red if the reclassification was based on imaging; C) Time-dependent receiver operating characteristics (tdROC) curves for prediction of 5-year DSS based on FIGO (2009) and FIGO (2018)