Methodology
The central radiotherapy prescribing system at a single institution was interrogated to identify patients with locally advanced cervical cancer who received SBRT boost to cervix in addition to or as a replacement for IBGT, from 1st July 2017 to 31st January 2021.

Results
17 patients were identified; median age was 68 years (range 32–77) and median follow up was 17 months. FIGO 2009 stage distribution was II (8/17), III (7/17), and IV (2/17). Mean tumour size was 4.5 cm. Indication for SBRT consisted of: medical contra-indication (9/17), unfavourable anatomy (5/17), and patient refusal (3/17). Median dose of external beam was 45 Gy in 25 fractions (range 43–50 Gy). SBRT boost PTV was delineated on CT (cervix and gross residual disease with a 4–5 mm margin), aiming for 24–28 Gy in 4 fractions (range 27–28 Gy). Median cumulative EQD2 (α/β= 10) was 75.2 Gy (range 58–91), and median SBRT PTV size was 54 cm³ (range 12–126). Local control rate was 15/17 (88.2%). G3 toxicity occurred in 2/17 (11.8%); one rectovaginal-vaginal and one vesico-vaginal fistula (the latter had progressive disease). No G4–5 toxicity was reported.

Conclusion
SBRT boost was effective and tolerable in this cohort, but EQD2 of 85–90 Gy was not achieved in majority of cases. MRI based planning may improve target delineation and a consensus guideline on appropriate constraints would be advantageous.

Introduction/Background
Objective to analyze the effect of pelvic floor muscle strengthening exercises on urinary incontinence in patients with cervical cancer.

Methodology
This study included 45 cervical cancer patients undergoing radiation therapy by using non-probability convenience sampling technique and design as quasi-experimental one-group pre-post design. Intervention- consisted of four pelvic floor exercises The patient was assessed for urinary incontinence by using the ICIQ UI-SF tool and perineometer on the 8th and 12th weeks. The statistical evaluation plan was the demographic and clinical data summarized with descriptive statistics and primary objectives evaluated with Friedman test, one-way ANOVA test and secondary objectives were evaluated with frequency distribution and chi-square t-test.

Results
In this study 45 women received the intervention. The result showed the frequency, quantity of urinary incontinence significantly reduced from the patient’s baseline parameters. Participant’s ICIQ UI SF total score was observed that on pre-test mean 12.56 (SD±3.74), 8 weeks of intervention mean 11.33 (SD±3.48) and 12 weeks of intervention mean 8.86 (SD±2.97) and P-value was statistically significant (p <0.001). There was a significant (P <0.001) improvement in the quality of life of participants. The research hypothesis was accepted. There was significant (p <0.001) alleviation in urinary incontinence after pelvic floor muscle strengthening exercises in a patient with cervical cancer undergoing radiation therapy. The pelvic floor muscle contractility on perineometer on pre-intervention mean was 21.63 (SD±2.71), on post-intervention 8 weeks mean was 22.33 (SD±2.65) and 12 weeks mean was 23.49 (SD±2.16). The pelvic floor muscle strengthening exercises were statistically significant (p <0.001).

Conclusion
Pelvic floor muscle strengthening exercises were effective for alleviating urinary incontinence which improved the quality of life of patients with cervical cancer undergoing radiation therapy. It is a statistically significant intervention.
disease (risk of recurrence: 13.1%). While, having HPV persistence >12 months did not correlate with an increased risk of recurrence (HR: 1.34 (95%CI: 0.78, 2.32); p=0.336, log-rank test).

Conclusion HPV persistence is one of the most important factor predicting the risk of CIN2+ recurrence. The risk of CIN2+ recurrence increased by the increase of HPV persistence up to one year. The persistence of HPV after the first year does not appear as a risk factor.

Abstract 2022-RA-743-ESGO

IMPROVING RISK STRATIFICATION FOR CERVICAL CANCER IN PATIENTS TREATED WITH CONCURRENT CHEMORADIATION AND MRI-IMAGE GUIDED ADAPTIVE BRACHYTHERAPY IN EMBRACE STUDY: RESULTS FROM AN INTERNATIONAL COLLABORATIVE TRANSLATIONAL RESEARCH STUDY (BIOEMBRACE-I)

1Supriya Chopra, 2Ekaterina S Jordanova, 3Nanda Horeweg, 3Kedar Deodhar, 4Santosh Menon, 4Venkatesh Pai, 5Sriyna Rafael, 6Unmesh Mahanthetty, 6Barbara Segedin, 7Nadia Giannakopoulou, 7Fleur Huang, 8Kjesti Bruheim, 9Marga Perz, 10Bhavana Rai, 11Li Tee Tan, 12Maximilian Schmid, 13Kari Tanderup, 14Richard Potter, 15Erasmus University Medical Centre, Rotterdam, Netherlands; 2Leiden University Medical Centre, Leiden, Netherlands; 3Tata Memorial Hospital,Tata Memorial Centre, Mumbai, India; 4Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India; 5ACTREC, Tata Memorial Hospital, Mumbai, India; 6Institute of Oncology, Ljubljana, Slovenia; 7Cross Cancer Institute, Edmonton, AB, Canada; 8Oslo University Hospital, Oslo, Norway; 9Navaroloblen-Centro De Investigacion Biomédica, Pamplona, Spain; 10Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India; 11Cambridge University Hospital, Addenbrooke, UK; 12Medical University Vienna, Vienna, Austria; 13Aarhus University Hospital, Aarhus University, Denmark; 14Medical University of Vienna, Vienna, Austria; 15Erasmus University Medical Centre, Rotterdam, Netherlands

Introduction/Background BIOEMBRACE-I is a translational sub-study of EMBRACE-I, initiated to improve risk stratification for cervical cancer patients treated with chemoradiation and MRI-guided brachytherapy

Methodology Between 2018–2021, patients were included from EMBRACE study sites. Prognostic factors at baseline and brachytherapy (FIGO stage, nodal involvement, histology, necrosis on MR, poor response indicated by high risk clinical target volume at brachytherapy (HRCTV-BT> 40 cc) were included. In the first stage, immunohistochemistry for p16 and L1CAM was performed. p16 was categorized as ‘positive’ or ‘negative’ and L1CAM was categorized as 0–10%, 10–50% or 50% overexpression. Response to EBRT and disease outcomes were tested after including p16 and L1CAM along with other prognostic factors. Univariate and multivariable analysis (MVA) was performed.

Results Eight EMBRACE sites included 264 patients with a median follow up of 50 months (21–67). Distribution of prognostic factors, including p16 and L1CAM expression is summarized in Table 1. The median HRCTV-BT and D-90 was 30 cm³ (IQR 22–44) and 89 Gy (IQR 86–95 Gy). p-16 positive patients had higher nodal positivity (96% vs. 3%, p=0.0001) or necrosis on MRI (73% vs. 26%, p=0.01) and proportion of HRCTV-BT < 40 cc (72.8% vs. 54.5%, p=0.03). The 5-year pelvic, disease control and disease free survival (DFS) was 87.3%,72.6% and 66.7% respectively. On MVA, FIGO stage (HR=5.4, p<0.0001), necrosis on MR (HR =2.6, p=0.005) and p-16 negative status (HR=2.1, p=0.07) predicted for HRCTV-BT > 40cc. For pelvic and disease control HRCTV-BT> 40cc and L1CAM > 50% were independent predictors, though reduced pelvic control was also observed at L1CAM >10% on univariate analysis. For DFS, nodal status and HRCTV-BT> 40cc were independent predictors (table 1).

Conclusion FIGO stage, necrosis on MR and p16 negative status predicted for HRCTV-BT > 40 cc. HRCTV-BT > 40 cc and L1CAM are prognostic for pelvic and disease control. PDL-1 analysis is ongoing.

Int J Gynecol Cancer: first published as 10.1136/ijgc-2022-ESGO.54 on 20 October 2022. Downloaded from http://ijgc.bmj.com/ on December 28, 2022 by guest. Protected by copyright.