Conclusion The proposed test is a viable alternative to the Myriad myChoice HRD test and can easily be implemented in a clinical laboratory for routine practice. The performance of the tests is similar in terms of hazard ratio but the lower failure rate of the Geneva HRD test allows a 10% increase in the number of patients receiving a conclusive laboratory result.

Introduction/Background The surgical approach to hysterectomy for ovarian cancer has remained largely unchanged since Hudson described the en-bloc resection of fixed ovarian tumors using a retrograde technique in 1968. When a colorectal resection is required for optimal debulking, anastomotic leak remains a significant concern. While the traditional techniques used to evaluate for anastomotic perfusion lack accuracy, data from a recent systematic review and meta-analysis favours the use of ICG intra-op to reduce the incidence of anastomotic leak and associated need for re-intervention.

Methodology With the use of surgical footage, this video aims to present the surgical steps to a Hudson procedure with colorectal resection, ending with the use of ICG fluorescence to assess the perfusion of the colorectal anastomosis and ureters.

Results The surgical approach can be summarized in the following ten steps: (1) retroperitoneal dissection of the vascular pedicles and ureters, and transection of the IP ligament; (2) transection of the vesciouterine and paravesical spaces; (3) lateral pedicles and ureters, and transection of the IP ligament; (4) colpotomy; (5) transection of the vesciouterine and pararectal spaces; (6) colpotomy; (7) mesorectal dissection of the uterine vessels; (8) proximal rectosigmoid transection; (9) vaginal vault closure and colorectal anastomosis; and distal rectal transection; (10) assessment of colorectal anastomosis and ureteral vasculization; (11) video presentation of 10 reproducible steps to perform a Hudson procedure with colorectal resection for ovarian cancer. The use of ICG as an adjunct to assess the vascularization of the colorectal anastomosis appears to reduce the risk of anastomotic leak in colorectal surgery, and may be of interest in gynecologic-oncologic surgery.
(31.4% LGSC vs 64.5% BOT, p= <0.0001). 47.8% of LGSC-patients did not know the difference between LGSC and HGSC and 73.9% were not offered a hormone replacement therapy. BOT-patients estimate the aggressiveness (31.2% BOT vs. 52.2% LGSC) and the risk of recurrence (28.2% BOT vs. 44% LGSC) of their disease lower than LGSC-patients.

Conclusion This study underlines the high need for more detailed explanation in this specific patient group with a greater focus on the underlying tumor biology and the corresponding course of disease and prognosis.

THE IMPACT OF THE PATTERN OF RECURRENCE ON POST-RELAPSE SURVIVAL ACCORDING TO SURGICAL TIMING IN PATIENTS WITH ADVANCED OVARIAN CANCER

Introduction/Background Our study aimed to evaluate the association between the timing of cytoreductive surgery (CRS) and the pattern of presentation of the first recurrence in patients with advanced ovarian cancer who underwent CRS. We also aimed to assess the impact of the pattern of recurrence on post-relapse overall survival (OS2) according to surgical timing.

Methodology This retrospective multicenter study evaluated patients with IIIC-IV FIGO stage ovarian cancer who underwent either primary debulking surgery (PDS), early interval debulking surgery (IDS) after 3–4 cycles of neoadjuvant chemotherapy (NACT), or delayed debulking surgery (DDS) after 6 cycles with minimal or no residual disease, between January 2008 and December 2015. Survival analyses were conducted using the Logrank test and the Cox model. Cumulative incidences of the different patterns of recurrence were estimated using a competing risks methodology.

Results A total of 549 patients were included: 175(31.9%) had PDS, 224(40.8%) early-IDS, and 150(27.3%) DDS. The cumulative incidence of peritoneal recurrences at two years was higher with increasing NACT cycles (PDS 24.4%, early-IDS 30.9%, DDS 39.2%; p=0.019). For pleural or pulmonary recurrences, it was higher after early-IDS (PDS 9.9%, early-IDS 13%, DDS 4.1%; p=0.022). Median OS2 was 33.5 months (95%CI [24.3–44.2]), 26.8 months (95%CI [22.8–32.6]), and 24.5 months (95%CI [18.6–29.4]) for PDS, early-IDS, and DDS groups, respectively (p=0.025). The pattern of the first recurrence (lymph node: HR 0.42, 95%CI [0.27–0.64]), surgical timing (DDS: HR 1.53, 95%CI [1.11–2.13]) and time to first recurrence (HR 0.95, 95%CI [0.93–0.96]) were associated with OS2. For PDS and early-IDS, lymph node recurrences were associated with significantly longer OS2.

Conclusion The pattern of first recurrence was associated with surgical timing, with peritoneal recurrences being more frequent after NACT. Lymph node recurrences were associated with better prognosis, having higher OS2, and was more marked after PDS and early-IDS.