Comparison between Bricker vs Standardized Leer Procedure after Pelvic Exenteration

Victor Lago, Blanca Segarra, Tamara Padilla, Pablo Padilla-Isern, Luis Matute, Marta Gurrea, Santiago Domingo. University Hospital La Fe, Valencia, Spain; CEU San Pablo University, Valencia, Spain; University Hospital Infanta Elena, Madrid, Spain

Introduction/Background Pelvic exenteration is performed in patients who suffer from relapsed gynaecologic tumours, with most of them requiring some sort of urinary diversion.

Methodology The main objective of this study was to assess the urinary complications associated with the Bricker ileal conduit versus double-barrelled wet colostomy after performing a pelvic exenteration for gynaecologic malignancies.

Results A total of 61 pelvic exenterations were identified between November 2010 and April 2022; 29 Bricker ileal conduits and 20 double-barrelled wet colostomies were included in the urinary diversion analysis. Regarding the specific short-term urinary complications, no differences were found in the rate of urinary leakage (3 vs 0%; p = 1), urostomy complications (7 vs 0%; p = 0.51), acute renal failure (10 vs 20%; p = 0.24) or urinary infection (0 vs 5%; p = 0.41). Up to 69% of patients with Bricker ileal conduits and 65% of double-barrelled wet colostomies (p = 0.76) presented specific medium/long-term urinary complications. No differences in the rates of pyelonephritis (5 vs 53%; p = 0.71), urinary fistula (0 vs 12%; p = 0.13), ureteral stricture (10 vs 6%; p = 1), conduit failure and reconstruction (7 vs 0%; p = 0.53), renal failure (38 vs 29%; p = 0.56) or electrolyte disorders (24 vs 18%; p = 0.72) were found. The OS (Overall survival) after pelvic exenteration at 12 and 48 months was 77% and 58%, respectively. The DFS (Disease Free Survival) at 12 and 48 months after pelvic exenteration was 64% and 51%, respectively.

Conclusion Between double-barrelled wet colostomy and the Bricker ileal conduit, the related urinary complications remained high regardless of the type of technique. In this context, the double-barrelled wet colostomy presents advantages such as the single stoma placement and the simplicity of the technique.

Association of Folate Receptor α Expression and Tumor Immune Microenvironment in Patients with Cervical Cancer

Medical Oncology, National Cancer Center Hospital, Tokyo, Japan; Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan; Gynecology, National Cancer Center Hospital, Tokyo, Japan; Epochal Precision Anti-Cancer Therapeutics (EPAT), Eisai Inc, Eton, PA

Introduction/Background Folate receptor α (FRα) is an attractive target for cancer treatment based on its expression profile. We previously reported that FRα expression was higher in cervical adenocarcinoma than in squamous cell carcinoma (SCC) and associated with poor survival (Takamizawa et al., AARC 2021). However, the relationship between FRα and the immune microenvironment remains unknown.

Methodology We performed immunohistochemical analysis of whole tumor sections from patients with cervical cancer who underwent primary surgery between 2000 and 2020 at our institution. FRα expression was evaluated using anti-FRα monoclonal antibody clone 26B3. FRα-positive and FRα-high were defined as ≥5% of tumor staining and as H-score ≥60. PD-L1 expression (clone 22C3) was assessed according to the combined positive score (CPS). The density of intratumoral CD3 and CD8 were calculated as the average number of positive cells in the five independent areas. The association between FRα expression and immune biomarkers was analyzed.

Results Overall, 123 patients were evaluated, and 67 were SCC and 56 were non-SCC. FRα-positive and FRα-high were identified in 72.4% and 27.6%. PD-L1 was positive (CPS≥1) in 75.6% and more commonly expressed in SCC (SCC vs. non-SCC; 83.5% vs. 66.1%, p=0.02). FRα expression showed a significantly negative correlation with PD-L1 expression (r=-0.22, p<0.001), and median (IQR) PD-L1 CPS was 20 (60) in FRα-negative and 5 (25) in FRα-positive group (p=0.04). FRα-positive was more frequent in PD-L1 CPS<10 groups than in PD-L1 CPS≥10 groups (81% vs. 64%, p=0.03). Median CD3 and CD8 counts were not different between FRα-negative and FRα-positive groups.

Conclusion In cervical cancer, FRα expression negatively correlates with PD-L1 expression and is more common in the PD-L1 CPS<10 groups. Our findings suggest that FRα-expression may be a potential therapeutic target for cervical cancer with low/negative PD-L1 expression.

Standardized Leer Procedure

Victor Lago, Blanca Segarra-Vidal, Pablo Padilla-Isern, Luis Matute, Marta Gurrea, Jose Antonio Perez Alvarez, Santiago Domingo, University Hospital La Fe, Valencia, Spain; University Hospital Nuestra señora de la candelaria, Tenerife, Spain

Introduction/Background Recurrence of cervical cancer is a challenge especially in patients who have received Radiochemotherapy for local extension at diagnosis. It is relatively
common to find, in case of recurrence, situations where the hypogastric vessels, obturator muscle and nerve are affected. **Methodology** The procedure called lateral extended endopelvic resection (LEER) was described by Hoekel et al. for surgical resection of lateral pelvic recurrences. We present a video surgery describing the vascular and nervous anatomy of the lateral pelvis and a case of 4-D reconstruction of the tumour and surgical resection of the tumour. **Results** LEER + Radical Hysterectomy + ureteral reimplantation + intraoperative radiotherapy was performed in a patient referred to our department for a single recurrence of cervical cancer on the right side of the pelvis after primary treatment with RT-QT. Complete resection of the tumour was achieved as shown in the video with uneventful post operative period. Free of disease after 2 years.

Conclusions With thorough anatomical knowledge, surgical resection of the lateral pelvic compartment is possible in case of recurrences.

Conclusion With thorough anatomical knowledge, surgical resection of the lateral pelvic compartment is possible in case of recurrences.

References

4. Juan Ramón Jiménez Hospital, Huelva, Spain; Hospital Costa del Sol, Marbella, Spain

5. Juan Ramón Jiménez Hospital, Huelva, Spain; Hospital Costa del Sol, Marbella, Spain

6. Juan Ramón Jiménez Hospital, Huelva, Spain; Hospital Costa del Sol, Marbella, Spain