TWENTY YEARS OF EXPERIENCE WITH LESS RADICAL FERTILITY-SPARING SURGERY IN EARLY-STAGE CERVICAL CANCER: PREGNANCY OUTCOMES

1Helena Robova, 1Lukas Rob, 1Michael Halaska, 2Tomas Pichlik, 2Jana Drozenova, 3Hana Malíková. Obstetrics and Gynecology, 3rd Medical Faculty of Charles University and University Hospital Kralovske Vinohrady, Prague 10, Czech Republic; 23rd Medical Faculty of Charles University and University Hospital Kralovske Vinohrady, Pathology, Czech Republic; 3Radiology, 3rd Medical Faculty of Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic.

1Obstetrics and Gynecology, 3rd Medical Faculty of Charles University and University Hospital Kralovske Vinohrady, Pathology, Czech Republic; 23rd Medical Faculty of Charles University and University Hospital Kralovske Vinohrady, Pathology, Czech Republic; 3Radiology, 3rd Medical Faculty of Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic.

Abstract 2022-RA-595-ESGO

Introduction/Background The standard procedure in cervical cancer is radical hysterectomy (RH) and pelvic lymphadenectomy (PLND). Because of the increasing age of women at childbirth, fertility becomes a major challenge. We present pregnancy results after less radical fertility-sparing surgery in women with IA1, LVI positive, IA2 and IB1 (<2 cm, infiltration less than half of stromal invasions.

Methodology Laparoscopic sentinel lymph node mapping (SLNM) with frozen section (FS) followed by PLND and ‘selective parametrectomy’ (removal of afferent lymphatic channels from the paracervix) in case of a negative result was performed in all women. If lymph nodes verified negative by definitive histopathology, patients were treated by simple trachelectomy (IB1) or large cone (IA1/IA2) biopsy 1 week after primary surgery.

Results From 1999 to 2018, 91 women were enrolled in the study (median age 29.1 years, range 21–40). In 76%(83.5%) fertility was spared, 13 (17.1%) of them don’t want to be pregnant and 63 (82.9%) wished pregnancy. 54 from 63 women conceived (pregnancy rate 85.7%) and 48 from 63 women delivered 58 babies (delivery rate 76.2%). 39 women delivered in term (67.2%), 13 women between 32 and 36+6 weeks of pregnancy, 3 between 28 and 31+6 weeks and 3 between 24 and 27+6 weeks. Only one woman still plan pregnancy. One woman is currently pregnant.

Conclusion Goal of fertility-sparing surgery is not only good oncological results, but also good pregnancy results. Pregnancy results after less radical fertility-sparing procedure seems to be very good (pregnancy rate 82.9% and delivery rate 76.2%).

This work is supported by Cooperatio program 207035.

Int J Gynecol Cancer 2022;32(Suppl 2):A1–A504

OVARIAN STEM CELLS FROM CRYOPRESERVED OVARIAN CORTEX: A POTENTIAL FOR NEO-OOGENESIS IN WOMEN WITH CANCER-TREATMENT RELATED INFERTILITY

1Erica Silvestris, 1Carla Minoia, 1Ambrogio Cavallini, 1Anita Cardubasi, 1Giuseppe de Palma, 2Francesco Avazzo, 2Vera Loizzi, 2Raffaella de Palo, 3Miriam Dellino, 3Gennaro Corino. 1Gynecologic Oncology Unit, IRCCS Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy; 2Haematology Unit, IRCCS Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy; 3Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy; 4Unit of Obstetrics and Gynecology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy; 5Department of Obstetrics and Gynecology, ‘San Paolo’ Hospital, Bari, Italy; 6Unit of Obstetrics and Gynecology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy.

Introduction/Background Cancer treatment related infertility (CTRI) affects more than one third of young women undergoing anti-cancer protocols, inducing a premature exhaustion of ovarian reserve. In addition to ovarian suppression by GnRHa, oocyte and cortex cryopreservation has gained great interest although the cortex reimplantation implies a few drawbacks as the risk to reintroduce malignant cells. The capability of ovarian stem cells (OCSs) from fresh ovarian cortex fragments to differentiate in vitro to mature oocytes provides a tool to overcome these drawbacks. In fact, since ovarian cortex sampling and cryopreservation is practicable before gonadotoxic treatments, the recruitment of OSCs from defrosted fragments could provide a novel opportunity to verify their suitability to be expanded in vitro as oocyte-like cells (OLCs).

Methodology A cortex piece from a 28 yrs-woman, submitted to annexectomy for a benign ovarian cyst, was cryostored in liquid nitrogen for one year. The strips were thawed and the OSCs isolation performed by enzyme-free method. The recruited cell suspension was stratified on Ficoll gradient and centrifuged, then recovered, incubated at 4°C with rabbit polyclonal anti-Ddx4 and followed by further incubation with anti-rabbit-IgG-FITC antibody. The OSC suspension was then incubated with 7-amino-actinomycin-D-labelled with phycoerythrin-5 as viability dye, and evaluated by flow cytometric analyses.

Int J Gynecol Cancer 2022;32(Suppl 2):A1–A504
RESULTS The cell population included large consistency of positive cells (A) which were analyzed in their vitality using the PC5-conjugated-7-AAD viability marker. Almost the full population, namely 95.7% of Ddx4+ cells were found viable among a minority equal to 4.3% of dead cells (B-C), suggesting that the fragments cryopreservation in liquid nitrogen is almost indolent on the OSC viability.

CONCLUSION The consistency of OSC population from a single cryopreserved ovarian cortex after thawing suggest that this population is apparently resistant to the temperature stress for freezing and thawing, thus reinforcing interest for stemness studies in treatment of female CTRL.

Abstracts

2022-VA-596-ESGO

LAPAROSCOPIC VAGINAL RADICAL TRACHELECTOMY IN THE POST LACC ERA: STEP BY STEP SURGICAL PROCEDURE

1\(^{1}\hbox{Benedetta Guani,} 2\(^{1}\hbox{Vincent Balaya,} 3\(^{2}\hbox{Fabrice Lecuru,} 4\(^{3}\hbox{Patrice Matehvet.} 1\hbox{CHUV, Lausanne, Switzerland; 2HFR, Fribourg, Switzerland; 3Hospital Foch, suresnes, France; 4Hospital Curie, Paris, France.}

10.1136/ijgc-2022-ESGO.369

Introduction/Background Therapeutic management of early stage cervical cancer is mainly based on surgery. Radical trachelectomy is a strategy to preserve the fertility of young patients with cervical cancer. In the ESGO and NCCN Guidelines, Radical Trachelectomy type B is indicated in case of cervical cancer stage 1B1. The prospective CONCERV study shows the safety of the simple conisation in early-stage cervical cancer <2 cm in case of stromal invasion <10 mm and no lymph vascular space invasion. Actually the indication to the radical trachelectomy remains: Cervical cancer <2 cm FIGO stage not more 1B1-Negative lymph node-Positive LVI.

The oncological safety of the minimally invasive approach has recently questioned by the international randomized LACC trial. This result have therefore renewed interest in the vaginal approach, associated to lymph node staging by laparoscopy.

Methodology We described the indication and the procedure in a video.

Results In this video we described the radical trachelectomy by the laparoscopic vaginal approach in 10 steps.

Conclusion This technique is a safe oncological procedure in the post-LACC era.

2022-RA-598-ESGO

PROGNOSTIC FACTORS FOR ADVERSE OBSTETRIC OUTCOMES IN PREGNANT CANCER PATIENTS AN UPDATE ON 2174 CASES REGISTERED IN THE INCIP REGISTRY

1\(^{1}\hbox{Charlotte Maggen,} 2\(^{2}\hbox{Josie Heimovaara,} 3\(^{3}\hbox{Kirstel van Calsteren,} 4\(^{4}\hbox{Eyle Cardonick,} 5\(^{5}\hbox{Amouschka Lauen,} 6\(^{7}\hbox{Roman G Shmakov,} 7\(^{8}\hbox{Vera Wolters,} 8\(^{9}\hbox{Mina Mhallem Gziri,} 9\(^{10}\hbox{Christianne Lok,} 10\(^{11}\hbox{Evgeniya Polushkina,} 11\(^{12}\hbox{Jeroen Blommaert,} 12\(^{13}\hbox{Michael Halaska,} 13\(^{14}\hbox{Robert Frusco,} 14\(^{15}\hbox{Alvaro Cabrera-Garcia,} 15\(^{16}\hbox{Ingrid A Boere,} 16\(^{17}\hbox{Ingrid A Boere,} 17\(^{18}\hbox{Petronella Ottevanger,} 18\(^{19}\hbox{Giovanina Scarfone,} 19\(^{20}\hbox{Jorine de Haan,} 20\(^{21}\hbox{Federic Aman.} 1\hbox{Obstetrics and perinatal medicine, UZ Brussel, Jette, Belgium; 2\hbox{KU Leuven, Leuven, Belgium; 3\hbox{University Hospitals of Leuven, Leuven, Belgium; 4\hbox{Department of Obstetrics and Gynecology, Cooper, University Health Care, Camden, NJ, USA; 5\hbox{University Hospitals of Leuven, Leuven, Belgium; 6\hbox{National Medical Research Centre for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia; 7\hbox{Institute of Obstetrics and Gynecology, University of Amsterdam – Antoni van Leeuwenhoek – Netherlands Cancer Institute, Amsterdam, The Netherlands, Amsterdam, Netherlands; 8\hbox{Department of Obstetrics, Cliniques Universitaires St Luc, UCL, Sint-Lambrechts-Woluwe, Belgium, Sint-Lambrechts-Woluwe, Belgium; 9\hbox{Faculty Hospital Kralovske Vinohrady and 3rd Medical Faculty, Charles University, Prague, Czech Republic, Prague, Czech Republic; 10\hbox{Clinic of Obstetrics and Gynecology, University of Milan – Bicocca, San Gerardo Hospital, Monza, Italy, Milan, Italy; 11\hbox{Hospital Regional de Alta Especialidad de Irapuato (HRAEI) Reference clinic for hematologic-oncological diseases during pregnancy CREHER’ Estado de Mexico, Mexico, Mexico, Mexico; 12\hbox{Department of Medical Oncology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands, Rotterdam, Netherlands; 13\hbox{Department of Obstetrics and Gynecology, University of Turin, Città della Salute e della Scienza, Sant’Anna Hospital, via Venticinque di Maggio 1, 10126, Turin, Italy; 14\hbox{Department of Medical Oncology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands, Rotterdam, Netherlands; 15\hbox{Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, Amsterdam, Netherlands.}}}

10.1136/ijgc-2022-ESGO.370

Introduction/Background Following the increasing evidence on fetal safety, over time more pregnant women are receiving cancer treatment, including chemotherapy, in order to safeguard maternal prognosis. To evaluate current clinical practice obstetric and neonatal outcomes of women registered by the International Network on Cancer, Infertility and Pregnancy (INCIPI) were assessed.

Abstract 2022-RA-598-ESGO Figure 1 Distribution of cancer types and cancer stages at diagnosis by cancer type (n=2174)