Objectives Women with cervical cancer who undergo radical hysterectomy are often treated postoperatively with chemoradiation. The patient selection that minimizes adjuvant treatment is valuable. We compared two methods for predicting postoperative adjuvant treatment of patients with stage IB2 cervical cancer.

Methods This multicenter retrospective study included 272 women with IB2 tumors. A receiver operating characteristic curve (ROC) analysis was used to determine the optimal tumor cutoff size to predict adjuvant treatment. A second analysis compared the rate of adjuvant treatment between women with and without lymph vascular space involvement (LVSI).

Results According to the ROC, the optimal cutoff value of tumor size for predicting adjuvant treatment was 2.95 cm (sensitivity 0.70, specificity 0.67). Tumors were \(\geq 3.0 \text{ cm} \) in 166 (61.0%) women. The rate of adjuvant treatment was higher in women with larger tumor diameter (73.8% vs. 47.9%, \(p<0.001 \)). Among women with LVSI, rates were higher of positive lymph nodes (41.0% vs. 14.5%, \(p<0.0001 \)) and postoperative adjuvant treatment (83.3% vs. 53.7%, \(p<0.0001 \)). Among women with tumor size \(\geq 3.0 \text{ cm} \) and LVSI, the rate of adjuvant treatment was 90.0%. In the multivariate analysis, both tumor size \(\geq 3.0 \text{ cm} \) and LVSI were independently associated with adjuvant treatment (OR 3.9, 95% CI 2.1–7.1; \(p<0.0001 \) and OR 4.9, 95% CI 2.4–10.0; \(p<0.0001 \), respectively).

Conclusions These data should be weighed in multidisciplinary consultation with radiation oncologists when deciding treatment strategy.

EPV035/#138 RADICAL TRACHELECTOMY. EXPERIENCE IN KAZIOR

1A Safaturova, 2O Kazdarova, 3B Batkabekova, 4Y Kushkabasow, 5D Kaidybekov. 1Kazakhstan Institute of Oncology and Radiology, Oncogynecology, Almaty, Kazakhstan; 2Kazakhstan Institute of Oncology and Radiology, Head of Kazior, Almaty, Kazakhstan; 3Almaty Oncological Center, Oncogynecology, Almaty, Kazakhstan

Objectives To investigate pregnancy outcomes in women after radical trachelectomy (RT) in Kazior for early-stage cervical cancer

Methods Systematic analysis of the data of the cancer register of the Republic of Kazakhstan

Results Since 2013, radical trachelectomy has been performed at Kazior. From 2013 to 2021, 8 operations were performed, 7 of them by abdominal access, 3 by laparoscopic approach. 6 (75%) of the patients had stage 1B1 from 2 to 4 cm; 2 (25%) had a 1A1 stage. The average age of patients was 28 years (from 26 to 37 years). 5 (62.5%) patients were nulliparous, 2 patients had 2 children, 1 patient had 1 child.

LVSI was negative in preoperative histological examination, and resection margins were also negative. The histological form of the tumor in all cases was squamous cell carcinoma. On average, 11 lymph nodes were removed. In 1 patient (12.5%) after histological examination LVSI was positive, in 7 it was negative. None of the patients had metastases to the pelvic lymph nodes. During express history, the resection margins were negative in all patients. Patients in the postoperative period were not prescribed chemoradiation therapy, of the 8 patients who retained fertility, there were 5 pregnancies, 2 miscarriages at 9–10 weeks, and 3 deliveries at 36–37 weeks of gestation.

Conclusions Thus, in 2013–2021, 8 radical trachelectomy operations were successfully performed. The data presented in this publication demonstrate that patients with stage IB1 tumors ranging in size from 2 to 4 cm and with favorable histology are acceptable candidates for attempted radical trachelectomy.

EPV036/#142 EUROPEAN NETWORK FOR GYNAECOLOGICAL ONCOLOGICAL TRIAL (ENGOT)-CX11/ GYNECOLOGIC ONCOLOGY GROUP (GOG) 3047/ KEYNOTE-A18: PHASE 3 TRIAL OF PEMBROLIZUMAB PLUS CHEMORADIOTHERAPY IN HIGH-RISK LOCALLY ADVANCED CERVICAL CANCER

1D Lorosso*, 2Y Xiang, 3N Colombò, 4RL Coleman, 5LM Randall, 6L Duska, 7H Kasegawa, 8A Moga-Berger-Santos, 9D Ciliberto, 10M Imera, 11B You, 12A Oken, 13M Christiaens, 14C Taskiran, 15Sehou, 16J Korach, 17C Marth, 18K Yamada, 19M Puglisi, 20Pignata, 21Associate Professor of Obstetrics and Gynecology, Catholic University of Sacred Heart, Rome, Italy; 22Department of Oncology, Copenhagen, Denmark; 23Instituto Europeo di Oncologia, Department of Gynecology, Milan, Italy; 24University of Texas MD Anderson Cancer Center, Department of Gynecologic Oncology and Reproductive Medicine, Houston, USA; 25Massey Cancer Center, Virginia Commonwealth University, Department of Obstetrics and Gynecology, Richmond, USA; 26University of Virginia, Department of Obstetrics and Gynecology, Charlottesville, USA; 27Saitama Medical University, Hidaka, Department of Gynecologic Oncology, Saitama Prefecture, Japan; 28Universidade Federal de Minas Gerais, Belo Horizonte, Departamento De Clinica Medica, Minas Gerais, Brazil; 29General Faculty Hospital in Prague, First Faculty of Medicine, Charles University, Department of Obstetrics and Gynecology, Prague, Czech Republic; 30Copenhagen University Hospital, Department of Oncology, Copenhagen, Denmark; 31CTOHL, IHCH, Hopital Civil de Lyon, Université Claude Bernard Lyon 1, Department of Medical Oncology, Lyon, France; 32Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Department of Medical Oncology, Barcelona, Spain; 33Universitat Ziekenhuis Leuven, Department of Radiation Oncology, Leuven, Belgium; 34Professor Koc University School of Medicine and VKV American Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology and Turkish Society of Gynecologic Oncology, Istanbul, Turkey; 35Charité-Universitätsmedizin Berlin, Department of Gynecology, Berlin, Germany; 36Sheba Medical Center, Gynecology Oncology Department, Ramat Gan, Israel; 37Medizinische Universität Innsbruck, Department of Obstetrics and Gynecology, Innsbruck, Austria; 38Merck and Co., Inc., Clinical Development, Kenilworth, USA; 39Istituto Nazionale Tumori IRCCS Fondazione G Pascale, Department of Uro-gynecologic Oncology, Napoli, Italy

Objectives High-risk locally advanced cervical cancer has a poor prognosis. External beam radiotherapy (EBRT) with concurrent chemotherapy followed by brachytherapy is the standard of care. The immunostimulatory activity of pembrolizumab may be enhanced by concurrent chemoradiotherapy (CCRT). Pembrolizumab monotherapy is approved for patients with PD-L1–positive recurrent or metastatic cervical cancer that progressed during or after chemotherapy. The phase 3 ENGOT-cx11/GOG 3047/KEYNOTE-A18 (NCT04221945) study is evaluating pembrolizumab with CCRT in patients with locally advanced cervical cancer.

Methods 980 patients with high-risk (FIGO 2014 stage IB2-IIb with node-positive disease or stage III-IVA), locally
advanced, previously untreated cervical cancer will be randomized 1:1 to receive either 5 cycles of pembrolizumab 200 mg Q3W plus CCRT followed by 15 cycles of pembrolizumab 400 mg Q6W or 5 cycles of placebo Q3W plus CCRT followed by 15 cycles of placebo Q6W. CCRT includes 5 cycles (optional 6th dose) of cisplatin 40 mg/m² Q1W plus EBRT followed by brachytherapy. Randomization is stratified by planned EBRT type (intensity-modulated radiotherapy [IMRT] or volumetric-modulated arc therapy [VMAT] vs non-IMRT or non-VMAT), screening stage cancer (IB2-IIb vs III-IVA), and planned total radiotherapy dose. Treatment will continue for 20 cycles or disease progression, unacceptable toxicity, or withdrawal. Primary endpoints are PFS per RECIST v1.1 by investigator and OS. Secondary endpoints include PFS at 2 years, OS at 3 years, CR at 12 weeks, ORR, and safety. Enrollment began May 2020 and is planned for 193 sites in 30 countries.

Results Not applicable

Conclusions Not applicable

EPV037/#157

INCIDENCE OF CERVICAL CANCER AND THE HPV VACCINE IN THE UNITED STATES: ARE WE SEEING RESULTS OF VACCINATION EFFORTS?

1. A Francoeur, 2C-I Liao, 3D Wong, 4A Mann, 4MA Caesar, 5A Chan, 6B Monk, 7D Kapp, 8J Chan.

1. University of California Los Angeles, Obstetrics and Gynecology, Los Angeles, USA; 2Kaohsiung Veterans General Hospital, Obstetrics and Gynecology, Kaohsiung City, Taiwan; 3Palo Alto Medical Foundation, Research Institute, Palo Alto, USA; 4California Pacific Medical Center, Research Institute, San Francisco, USA; 5Palo Alto Medical Foundation Research Institute, Obstetrics and Gynecology, Palo Alto, USA; 6Arizona Oncology, Gynecologic Oncology, Obstetrics and Gynecology, Phoenix, USA; 7Stanford University School of Medicine, Department of Radiation Oncology, Stanford, USA; 8California Pacific Medical Center, Obstetrics and Gynecology, San Francisco, USA.

10.1136/ijgc-2021-IGCS.105

Objectives To determine the incidence and trends of cervical cancer in the United States in relation to the HPV vaccine.

Methods Data were obtained from the U.S. Cancer Statistics program from 2001–2017. SEER*Stat 8.3.8 and Joinpoint regression program 4.8.0.1 were used to calculate incidence trends.

Results Over the last 17 years, cervical cancer incidence is decreasing at an average annual percent change (AAPC) of -1.03% (p<0.001). We performed a subset analysis of women who were 9–13 years old in 2006 when the HPV vaccine was approved, now 20–24 years old in 2017. In the pre-vaccine era (2001–2011), the incidence of cancer decreased 2.3% annually (p=0.038), of note, after the introduction of the vaccine (2011–2017), it decreased at 9.6% per year (p=0.002). In the pre-vaccine era (2001–2012), the incidence of new diagnoses of squamous cell carcinoma observed a decrease of 3.1% annually (p=0.004). However, in the post-vaccine era (2012–2017), there was an 11.8% decline in new cases per year (p=0.007). Although there is a decrease in older age groups, there is no difference in the trends pre and post vaccine era, particularly in the age groups who were not eligible for vaccination at that time.

Conclusions In our population analysis, our data suggest that the HPV vaccination may have decreased in incidence of cervical cancer in the younger cohort after its approval.

EPV039/#175

RELATIVE IMPORTANCE OF INDIVIDUAL INSURANCE STATUS AND HOSPITAL PAYER MIX ON SURVIVAL FOR WOMEN WITH CERVICAL CANCER

1. C Cherston*, 2Y Huang, 1A Melamed, 3V Prabhu, 2Y Li, 1J Wright. 1Columbia University, Gynecologic Oncology, New York, USA; 2Merck and Co., Inc., Outcomes Research, Kenilworth, USA.

10.1136/ijgc-2021-IGCS.107

Objectives Safety-net hospitals (SNH) are important sites of care especially for vulnerable groups (e.g., uninsured/Medic-aid). We examined the relative contributions of individual insurance status and hospital payer mix on quality of care and survival for women with cervical cancer.