the left side of vulva, inguinal palpation was normal, and no abnormalities was detected in the internal genitalia (figure 1). In the pelvic MRI a 69×65×55 mm vulvar mass was reported, and this mass showed a FDG uptake of 11.5 SUVmax in the PET-CT. No distant and nodal uptake was detected. Also, upper, and lower gastrointestinal endoscopies were reported normal.

A vulvar mass resection and left superficial inguinal lymphadenectomy was performed. During the operation the mass was mobile and no invasion with other tissues was detected. The final pathology specimen was diagnosed as yolk sac tumour of the vulva, all surgical margins and lymph nodes were negative (figure 2). The patient was given four cycles of Bleomycin, Etoposide and Cisplatin (BEP) chemotherapy. She is being regularly examined every three months and no relapse has been detected in 10 months.

Conclusion Primary YST of the vulva is extremely rare and this case is the 16. case in the literature. Local excision and adjuvant BEP chemotherapy should be the choice of treatment in these patients.

Result(s)
- A proper vulvar incision depending on the localization of the tumor with 2cm lateral gross margin if possible is performed (close to the urethra and anus this margin will decrease to 1cm).
- The incision deepens down to the level of perineal membrane (the inferior fascia of the urogenital diaphragm which is superior to the superficial perineal space) by passing through the subcutaneous fatty tissue with creating dissection tunnels.
- At the cranial part of the dissection, the pubic peristome is found and here, the suspensory ligament of clitoris with the dorsal artery of clitoris should be ligated.
- At the cranialateral part of the vulvar dissection, the adductor fascia is encountered.
- At the caudolateral part of the vulvar dissection, the perineal branches of the internal pudendal artery lie at the 5 and 7 o'clock positions of the vulva.
- At the caudal part of the vulvar dissection, the posterior vulvar tissue is dissected from the perineal body and here, the dissection proceeds over the rectovaginal septum.
- A circumferential vaginal inner incision encircling the vaginal introitus and lying superior to the external urethral meatus is performed, by the way the outer vulvar and inner vaginal incision are bounded. Here, a Foley catheter may secure the urethra.
- After excision of the vulvar tissue; if possible, the wound is closed primarily. First, the deep subcutaneous part is closed and the lateral margin of the vaginal introitus is sutured to the medial edge of the vulvar excision line.
- If it is not possible to close the wound with primary sutures, a flap reconstruction is performed.

Conclusion The perineal arteries at 5 and 7 o'clock positions should be kept on mind while performing a radical vulvectomy and the deepness of the excision at the base of the tumor should extend to the level of the perineal membrane.
Abstracts

4. When the superficial inguinal lymph nodes are retracted over the facia lata from the cranio-lateral part, the fossa ovalis is identified at the central part of the incision, which is covered by the cribriform fascia. Besides, during the excision of the superficial nodes at the caudal part of this area, the great saphenous vein passing through the fossa ovalis is identified.

5. After total excision of the superficial inguinal lymph nodes, the cribriform fascia is dissected. The femoral vein is identified below the fascia lata, covered by the femoral sheath between the sartorius muscle laterally and the adductor longus muscle medially. The great saphenous vein drains into the femoral vein, and the deep inguinal lymph nodes, which are located medial to the femoral vein, are dissected. The femoral artery lies at the lateral part of the femoral vein, and the femoral nerve is the most lateral component in the femoral sheath.

6. The deep inguinosfemoral lymph nodes cover the base of the great saphenous vein.

7. During excision of the deep inguinosfemoral lymph nodes, the deep external pudendal vein should also be kept in mind, which drains into the great saphenous vein.

Conclusion* The essential anatomy of the superficial inguinal and deep femoral lymph nodes, with Scarpa’s fascia, facia lata of the thigh, and cribriform fascia should be known to perform an inguinosfemoral lymphadenectomy.

Cervical cancer

58 KEYNOTE-826: PEMBROLIZUMAB PLUS CHEMOTHERAPY VERSUS PLACEBO PLUS CHEMOTHERAPY FOR PERSISTENT, RECURRENT, OR METASTATIC CERVICAL CANCER

1 N Colombo 1, C Dubos 1, D Lorusso 1, V Caceres 1, K Hasegawa 1, R Shapia-Frommer 1, K Tewari 2, P Salman 2, H Hoyos Usta 3, V Yañez 4, M Gümüş 5, M Oliveira Hurtado de Mendoça 5, S Samoïlova 6, V Castonguay 6, A Arkhipov 6, K Toker 6, D Kui 6, S Keffe 6, S Monk 1, 7 University of Milan-Bicocca and European Institute of Oncology (IEO) IRCCS, Milan, Italy; 2 Institute Curie Saint-Cloud, Group of Investigateurs Nationaux pour l’Etude des Cancers Ovariens (GINEOC), Saint-Cloud, France; 3 Fondazione Policlinico Universitario A Gemelli IRCCS and Catholic University of Sacred Heart, Rome, Italy; 4 Institute of Oncology, Angel H. Roffo, Buenos Aires, Argentina; 5 Saitama Medical University International Medical Center, Hidaka, Japan; 6 Ella Lernbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel; 7 University of California Irvine, Irvine, USA; 8 Onciuda Cancer Centre, Providencia, Chile; 9 Imat Oncomedica S.A., Monteria, Colombia; 10 Universidad de La Frontera, Temuco, Chile; 11 Istanbul Medeniyet University Hospital, Istanbul, Turkey; 12 Instituto Nacional de Enfermedades Neoplásicas, Medical Oncology, Lima, Peru; 13 Centre Hospitalier de l’Université de Montréal (CHUM), Centre de Recherche de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, Canada; 14 Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, Canada; 15 Medical Rehabilitation Center under the Ministry of Health of Russian Federation, Moscow, Russian Federation; 16 Merck and Co., Inc., Kenilworth, USA; 17 Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, USA

Introduction/Background Pembrolizumab has efficacy in previously treated, PD-L1-positive advanced cervical cancer. KEYNOTE-826 (NCT03635567) was a phase 3, randomised, double-blind trial of pembrolizumab or placebo added to chemotherapy ± bevacizumab for first-line treatment of recurrent, persistent, or metastatic cervical cancer.

Methodology Eligible adults had persistent, recurrent, or metastatic cervical cancer not previously treated with systemic chemotherapy and not amenable to curative treatment. Patients were randomised 1:1 to pembrolizumab 200 mg or placebo Q3W for ≤35 cycles added to chemotherapy (paclitaxel plus cisplatin or carboplatin) ± bevacizumab and stratified by metastatic status at diagnosis, planned bevacizumab use, and PD-L1 combined positive score (CPS). Dual primary endpoints were PFS (RECIST v1.1, investigator review) and OS tested sequentially in the CPS ≥1, all-comer, and CPS ≥10 populations.

Result(s) 617 patients were randomized: 308 to pembrolizumab plus chemotherapy (63.6% with bevacizumab) and 309 to placebo plus chemotherapy (62.5% with bevacizumab); 548 (88.8%) patients had CPS ≥1, 317 (51.4%) had CPS ≥10. At the protocol-specified first interim analysis, pembrolizumab plus chemotherapy ± bevacizumab significantly improved PFS in the CPS ≥1 (median, 10.4 vs 8.2 months; HR, 0.62 [95% CI, 0.50–0.77]; P<0.001), all-comer (10.4 vs 8.2 months; 0.65 [0.53–0.79]; P<0.001), and CPS ≥10 (10.4 vs 8.1 months; 0.58 [0.44–0.77]; P<0.001) populations. OS was also significantly improved in the CPS ≥1 (median, not reached [NR] vs 16.3 months; HR, 0.64 [95% CI, 0.50–0.81]; P<0.001), all-comer (24.4 vs 16.5 months; 0.67 [0.54–0.84]; P<0.001), and CPS ≥10 (NR vs 16.4 months; 0.61 [0.44–0.84]; P<0.001) populations. Benefits were seen in the with and without bevacizumab subgroups. The incidence of grade ≥3 AEs was 81.8% in the pembrolizumab arm and 75.1% in the placebo arm. Anaemia and neutropenia were the most common grade ≥3 AEs (30.3% vs 26.9% and 12.4% vs 9.7%, respectively).

Conclusion Pembrolizumab plus chemotherapy ± bevacizumab significantly improves OS and PFS in patients with persistent, recurrent, or metastatic cervical cancer. Along with a manageable safety profile, the clinically meaningful survival benefits suggest pembrolizumab plus chemotherapy ± bevacizumab may be a new standard first-line therapy for this population.

Late breaking abstracts

Identifying predictors of lymph node metastases in early-stage cervical cancer by transferring prediction models across international registries

1 T Schnack, 2,3 H Wenzel, 4,5 A Norberg Hardie, 6 R Bekkers, 7,8 H Falconer, 1 C Hegdall, 8,9 H Jensen, 1,2 V Lemmens, 1,2 F Martin, 1,2 H Nijman, 1 M Van der Aa, 1 A Moncada-Torres, 1 Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Department of Gynaecology, Copenhagen, Denmark; 2 Netherlands Comprehensive Cancer Organisation (KONI), Department of Research and Development, Utrecht, Netherlands; 3 University Medical Centre Groningen; University of Groningen, Department of Obstetrics and Gynaecology, Groningen, Netherlands; 4 Karolinska University Hospital, Department of Pelvic Cancer, Stockholm, Sweden; 5 Karolinska Institutet, Department of Women’s and Children’s Health, Stockholm, Sweden; 6 GROW school for oncology and developmental biology, Maastricht University Medical Centre+, Department of Obstetrics and Gynaecology, Maastricht, Netherlands; 7 Catharina Hospital, Department of Obstetrics and Gynaecology, Eindhoven, Netherlands; 8 Aarhus University Hospital, Department of Gynaecology, Aarhus, Denmark; 9 Aarhus University, Institute of Clinical Medicine, Faculty of Health, Aarhus, Denmark; 10 University of Southern Denmark, Clinical Institute, Faculty of Health Sciences, Odense, Denmark; 11 Erasmus MC University Medical Centre, Department of Public Health, Rotterdam, Netherlands

Introduction/Background Identifying risk factors for lymph node metastases in early-stage cervical cancer may aid in tailoring treatment. Unfortunately, early-stage cervical cancer research is often hampered by small sample sizes.

10.1136/ijgc-2021-ESGO.640

10.1136/ijgc-2021-ESGO.642