Conclusion* High consistency was found between the modeled CA125 KELIM calculated during the pathological response, consistent with their values as indicators of the tumor chemosensitivity in first-line setting. Moreover, TILs changes were strongly associated with chemosensitivity, opening hypotheses about the mechanisms of chemosensitivity, and immunotherapy opportunity.

1057 DEVELOPMENT AND VALIDATION OF A MACHINE-LEARNING-DERIVED RNASEQ PROGNOSTIC SIGNATURE IN ENDOMETRIAL CANCER

Introduction/Background* Because of inter-tumor heterogeneity of endometrial carcinoma (EC), prognostication remains challenging. We aimed to develop a RNAseq signature to stratify EC patient prognosis beyond molecular subtyping.

Methodology A prognostic signature was identified using a LASSO-penalized Cox regression model on TCGA (N=543 patients). A polyA-RNAseq-based method was developed for validation of the signature in a cohort of stage I-IV EC patients treated in two Paris Hospitals between 2010 and 2017. Model performances were evaluated using time-dependent ROC curves (prediction of disease-specific-survival (DSS)). The additional value of the RNAseq signature was evaluated using uni/multivariable Cox models (hazard ratio (HR) with 95% confidence interval) and Kaplan-Meier analysis.

Result(s)* Among 209 patients included in the validation cohort (median follow-up 53 months IQR [41-69], 61 (30%), 10 (5%), 52 (25%), and 82 (40%), had mismatch repair-deficient, POLE-mutated, TP53-mutated tumors, and tumors with no specific molecular profile, respectively. The 38-genes signature accurately predicted DSS (AUC=80%). Using a composite classifier accounting for the RNAseq signature and the TP53-mutated group, three groups were identified: good prognosis tumors based on RNAseq signature and without TP53 mutation, characterized by excellent outcome (N=103 patients, 5-years DSS rates of 99%) (reference), poor prognosis tumors whatever the RNAseq signature and without TP53 mutation, characterized by excellent outcome (N=103 patients, 5-years DSS rates of 99%) (reference), poor prognosis tumors whatever the RNAseq signature and without TP53 mutation, characterized by excellent outcome (N=103 patients, 5-years DSS rates of 99%) (reference).
CLINICAL IMPACT OF MESOTHELIN EXPRESSION IN OVARIAN CANCER: A TISSUE MICROARRAY STUDY ON 113 PATIENTS

Introduction/Background* Mesothelin (MSLN) is a CA125 binding protein that mediates cell adhesion. This interaction was suggested to play a role in the peritoneal metastasis development. In preclinical models, MSLN overexpression activates the PI3K/Akt, NFκB, and MAPK/ERK pathways, to promote cell proliferation, migration and metastasis. For these reasons, MSLN represents an attractive molecule for targeted ovarian cancer (OC) therapies.

Methodology Paraffin-embedded tumor tissue samples from 113 primary OC patients were selected from TOC biobank (Suppl 3):A1-001–001. RNAseq analysis was performed in 51 paired primary and recurrent OC patients. MSLN expression was also compared between paired primary and recurrent HGSOC samples.

Result(s)* 164 samples were assessed for MSLN expression (113 primary OC and 51 recurrent OC).

Among the primary OC cohort, results showed that MSLN (+) samples were 85% of cases (96/113), whereas MSLN was negative in the remaining 15% of cases (17/113). MSLN expression did not differ among different OC histological subtypes (serous, clear cells and endometrioid), but MSLN (+) samples were diagnosed more frequent in the group of advanced FIGO stage (65/96 vs 31/96, p=0.022) and in platinum sensitive patients (85/96 vs 11/96, p=0.001).

Survival analysis showed that MSLN(+) was associated with a significant survival advantage at 5yOS (p=0.022) in HGSOC patients. No survival impact (5yPFS and/or 5yOS) of MSLN expression could be detected for other OC histologies.

Pairwise analysis on paired primary and recurrent HGSOC, also revealed that MSLN(+) tumors were more frequent among primary rather than recurrent HGSOC (46/51 vs 38/51, p=0.012); Furthermore, Spearman test showed a significant correlation among primary and recurrent samples in terms of MSLN expression decrease at recurrence (p=0.003).

Conclusion* Overexpression of MSLN was observed in FIGO advanced stage and in platinum sensitive primary OC patients. MSLN expression was equally distributed among different OC histologies, but in HGSOC conferred survival advantage. Moreover, its expression significantly decreased from primary to recurrent OC.

1J Mari Alexandre*, 1B Mc Cormack; 2I Oto-Martinez, 1I Tomas Perez, 1A Fernandez-Pardo, 1E Gonzalez-Canto, 1F Cana, 1C Aghhababian, 1R Herranz, 1S Caifeite-Mota, 1A Cuadros-Lozano, 1L. D Martinez-Fernandez, 1A Aranda-Borreda, 1A Arroyo-Alvarez, 1N Santonja-Lopez, 1R Ramirez-Belcho, 1B A Luca, 1P Medina, 1L.G. Gilabert-Estelles. 1Research Foundation of Hospital General Universitario de Valencia, Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Valencia, Spain; 2Haemostasis, Thrombosis, Atherosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain; 3Consorci Hospital General University of Valencia, Gynecology and Obstetrics Service, Valencia, Spain; 4General University Hospital of Castellon, Obstetrics and Gynecology Service, Castello de la Plana, Spain; 5Consorci Hospital General Universitario de Valencia, Medicine Oncology Service, Valencia, Spain; 6General University Hospital of Castellon, Multidisciplinary Unit of Abdominal Pelvic Oncology Surgery, Castello de la Plana, Spain; 7University Jaume I, Department of Medicine, Castello de la Plana, Spain; 8University of Valencia, Pediatrics, Obstetrics and Gynecology, Valencia, Spain

10.1136/ijgc-2021-ESGO.604

CONTRIBUTION OF NETOSIS IN ADVANCED STAGES OF HIGH-GRADE SEROUS OVARIAN CANCER: DIAGNOSTIC IMPLICATIONS

Introduction/Background* NETosis has recently been described as a new form of neutrophils’ immune response, by which they release extracellular networks (NETs) of DNA, histones and proteins. In the tumor environment, NETs participate in immunothrombosis, tumor progression, metastasis, and evasion of the immune system. Recent studies show that NETosis is involved in the initial metastasis of high-grade serous ovarian cancer (HGSOC), although its contribution in advanced stages or as a diagnostic biomarker is unknown, which is the objective of this study.

Methodology We analyzed paired plasma and ascites fluid samples from women with HGSOC (n=28) and controls (n=16). As NETosis markers, we quantified cell-free circulating DNA (cfDNA, Quant-iT PicoGreen dsDNA kit), nucleosomes (Cell Death Detection ELISA PLUS kit), calprotectin (Human Calprotectin ELISA kit) and myeloperoxidase (MPO) (Human MPO ELISA kit) and we evaluated their differences with the SPSS program (v.21).

Result(s)* Patients with HGSOC presented a higher concentration of cfDNA in plasma (median 1785.9 ng/mL; Q1-Q3: 1061.0-2069.6) compared to the controls (1526.7; 1452.0-1620.5, p<0.001). In addition, we observed an increase in the 4 NETosis markers evaluated in patients’ ascites: cfDNA [(2128.9; 1477.8-2814.5) vs. (1148.1; 990.8-1235.3), p<0.001], nucleosomes [(2,58 AU; 1,27-3,16) vs. (0.09; 0.003-0.55), p<0.001], calprotectin [(2606.8 ng/mL; 1028.3-5021.7] vs. (353.5; 195.5-722.3), p<0.001] and MPO [(73.3 ng/mL; 48.8-141.4) vs. (25.3; 22.6-29.4), p<0.001 (figure 1)].

The levels of the 4 markers were positively correlated with each other in both biofluids (p<0.032) and with the levels of neutrophils in plasma (p<0.001). We also observed that cfDNA in plasma was able to distinguish patients from controls (AUC=0.842). Furthermore, the levels of cfDNA,