architecture and microenvironment. In this study, we aim to generate multisite PDOs to demonstrate the spatial heterogeneity of cancer stem cells (CSCs) and responses to chemotherapy treatments in disseminated HGSOC.

Methodology Tumour cells were extracted from disseminated multisite tumours from chemo-naïve patients undergoing maximal effort cytoreductive surgery at Hammersmith Hospital, UK. PDOs were established by embedding tumour cells in basement membrane extract and in specialised organoid or R-Spondin-enriched media. PDOs were propagated and treated with standard-of-care chemotherapy drugs (cis- and carboplatin, PARPi) to assess drug responses. PDOs were histologically processed for characterisation of tumour markers, and CSCs across multiple tumour sites and passages. PDOs were established from multisite deposits (n=8 patients, mean = 7 tumours per patient, range = 4 – 10) and confirmed to be of HGSOC tumour origin. Response to R-Spondin-enriched media varied across sites and across patients, but was maintained over multiple passages. PDOs were assessed for expression of known CSC biomarkers (ALDH1, CD117, CD133, CD44). IC50 assays established for standard-of-care chemotherapy drugs demonstrated heterogenous responses to treatment.

Conclusion PDOs demonstrated the heterogeneity of the CSC population, growth conditions, and drug responses, reflecting the complexity of HGSOC. Our data suggests that treatment regimens chosen based on drug response from a single tumour site may not be effective against other disseminated tumours. PDOs which include multiple metastatic sites may lead to the development of targeted and personalized treatment strategies which reflect the spatial heterogeneity of HGSOC.

Abstracts

1003 THE ROLE OF DAPK1 IN THE CELL CYCLE REGULATION OF CERVICAL CANCER CELLS AND IN RESPONSE TO TOPOTECAN

1K Gasimii*, 2M Raab, 3S Becker, 4M Sanhaji, 1,2K Strebhardt. 1Goethe University Frankfurt, Department of Gynecology and Gynecological Oncology, Frankfurt, Germany; 2German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany

Introduction/Background Cervical cancer is the fourth most common cancers among women worldwide. Primary therapy of cervical cancer depends on the disease extent and is based on radical hysterectomy or chemoradiation. However, therapeutic approaches in metastatic and recurrent disease of cervical cancer are limited. Particular effort in drug development focuses on essential serine/threonine kinases like the death-associated protein kinase 1 (DAPK1) and Polo-like kinase 1 (PLK1) as potential therapeutic targets in cervical cancer.

Methodology and Result(s) Our study examined the role of DAPK1 during the cell cycle of cervical cancer cells. We found that DAPK1 is autophosphorylated in mitosis, exhibiting only low activity towards exogenous substrates. Furthermore, DAPK1 localizes together with PLK1 at centrosomes, which can phosphorylate DAPK1. Finally, we could show that Topotecan, which is used in different clinical trials to treat cervical cancer, induces cell death, which partially depends on DAPK1. Topotecan is an effective drug for the treatment of cervical cancer. We explored the role of DAPK1 in Topotecan-induced cervical cancer cell death and revealed that the RNAi-based silencing of DAPK1 downregulates the apoptotic activity suggesting that DAPK1 could be a biomarker for the response to Topotecan in clinical trials.
Abstract 1003 Figure 1

A. DAPK1 level

B. Double thymidine treated

C. Noc treated

D. RO-3306 treated

E. Noc + RO-3306 treated